完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShyng, Jhieh-Yuen_US
dc.contributor.authorShieh, How-Mingen_US
dc.contributor.authorTzeng, Gwo-Hshiungen_US
dc.date.accessioned2014-12-08T15:11:30Z-
dc.date.available2014-12-08T15:11:30Z-
dc.date.issued2011-06-01en_US
dc.identifier.issn1568-4946en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.asoc.2011.01.038en_US
dc.identifier.urihttp://hdl.handle.net/11536/8820-
dc.description.abstractThis study proposes a selection index technique, namely a compactness rate based on Rough Set Theory (RST), for improving data analysis, eliminating data amount and reducing the number of decision rule. This study uses an empirical real-case involving a personal investment portfolio to demonstrate the proposed method. The presented case includes 75 rules generated by the RST. The rules are vague and fragmentary, making it very difficult to interpret the information. Many rules have the same strength and number of support objects and condition parts. These are creating a critical problem for decision making. The new method proposed in this study not only enables the selection of interesting rules, but it also reduces the data amount, and offers alternative strategies that can help decision-makers analyze data. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectRough Set Theory (RST)en_US
dc.subjectCompactness rateen_US
dc.subjectStrength rateen_US
dc.subjectSupporten_US
dc.subjectInvestment portfolioen_US
dc.titleCompactness rate as a rule selection index based on Rough Set Theory to improve data analysis for personal investment portfoliosen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.asoc.2011.01.038en_US
dc.identifier.journalAPPLIED SOFT COMPUTINGen_US
dc.citation.volume11en_US
dc.citation.issue4en_US
dc.citation.spage3671en_US
dc.citation.epage3679en_US
dc.contributor.department科技管理研究所zh_TW
dc.contributor.departmentInstitute of Management of Technologyen_US
dc.identifier.wosnumberWOS:000289508000036-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000289508000036.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。