Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Tiexiangen_US
dc.contributor.authorChiang, Chun-Yuehen_US
dc.contributor.authorChu, Eric King-wahen_US
dc.contributor.authorLin, Wen-Weien_US
dc.date.accessioned2014-12-08T15:11:30Z-
dc.date.available2014-12-08T15:11:30Z-
dc.date.issued2011-06-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2009.12.020en_US
dc.identifier.urihttp://hdl.handle.net/11536/8821-
dc.description.abstractIn this paper, we propose the palindromic doubling algorithm (PDA) for the palindromic generalized eigenvalue problem (PGEP) A*x = lambda Ax. We establish a complete convergence theory of the PDA for PGEPs without unimodular eigenvalues, or with unimodular eigenvalues of partial multiplicities two (one or two for eigenvalue 1). Some important applications from the vibration analysis and the optimal control for singular descriptor linear systems will be presented to illustrate the feasibility and efficiency of the PDA. (C) 2009 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectPalindromic generalized eigenvalue problemen_US
dc.subjectDoubling algorithmen_US
dc.subjectSingular descriptor systemen_US
dc.titleThe palindromic generalized eigenvalue problem A*x = lambda Ax: Numerical solution and applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2009.12.020en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume434en_US
dc.citation.issue11en_US
dc.citation.spage2269en_US
dc.citation.epage2284en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.department數學建模與科學計算所(含中心)zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.contributor.departmentGraduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000289497700004-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000289497700004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.