完整後設資料紀錄
DC 欄位語言
dc.contributor.author楊一帆en_US
dc.contributor.authorYang Yifanen_US
dc.date.accessioned2014-12-13T10:29:09Z-
dc.date.available2014-12-13T10:29:09Z-
dc.date.issued2007en_US
dc.identifier.govdocNSC96-2628-M009-014zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/88926-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=1456439&docId=260542en_US
dc.description.abstract在稍早一篇論文中我們發現Calabi-Yau threefolds 的Picard-Fuchs differential equations 的monodromy groups 落在symplectic group 的同餘子群。很自然地我 們就會聯想到這些微分方程可能會與Siegel modular forms 有所關聯。在這研究 計畫中我們將探討這個問題。zh_TW
dc.description.abstractIn an earlier work, we found that the monodromy groups of Picard-Fuchs differential equations of Calabi-Yau threefolds are contained in certain congruence subgroups of the symplectic group. It is naturally to consider whether those differential equations are related to Siegel modular forms.We plan to pursue this problem.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.title卡拉比—邱流型與齊苟模型式的關聯(I)zh_TW
dc.titleDifferential Equations of Calabi-Yau Type and Siegel Modular Forms(I)en_US
dc.typePlanen_US
dc.contributor.department國立交通大學應用數學系(所)zh_TW
顯示於類別:研究計畫


文件中的檔案:

  1. 962628M009014.PDF

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。