完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 楊一帆 | en_US |
dc.contributor.author | Yang Yifan | en_US |
dc.date.accessioned | 2014-12-13T10:29:09Z | - |
dc.date.available | 2014-12-13T10:29:09Z | - |
dc.date.issued | 2007 | en_US |
dc.identifier.govdoc | NSC96-2628-M009-014 | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11536/88926 | - |
dc.identifier.uri | https://www.grb.gov.tw/search/planDetail?id=1456439&docId=260542 | en_US |
dc.description.abstract | 在稍早一篇論文中我們發現Calabi-Yau threefolds 的Picard-Fuchs differential equations 的monodromy groups 落在symplectic group 的同餘子群。很自然地我 們就會聯想到這些微分方程可能會與Siegel modular forms 有所關聯。在這研究 計畫中我們將探討這個問題。 | zh_TW |
dc.description.abstract | In an earlier work, we found that the monodromy groups of Picard-Fuchs differential equations of Calabi-Yau threefolds are contained in certain congruence subgroups of the symplectic group. It is naturally to consider whether those differential equations are related to Siegel modular forms.We plan to pursue this problem. | en_US |
dc.description.sponsorship | 行政院國家科學委員會 | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.title | 卡拉比—邱流型與齊苟模型式的關聯(I) | zh_TW |
dc.title | Differential Equations of Calabi-Yau Type and Siegel Modular Forms(I) | en_US |
dc.type | Plan | en_US |
dc.contributor.department | 國立交通大學應用數學系(所) | zh_TW |
顯示於類別: | 研究計畫 |