Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, Chia-Jungen_US
dc.contributor.authorTsai, Shi-Chunen_US
dc.date.accessioned2014-12-08T15:11:36Z-
dc.date.available2014-12-08T15:11:36Z-
dc.date.issued2011-05-01en_US
dc.identifier.issn1016-2364en_US
dc.identifier.urihttp://hdl.handle.net/11536/8899-
dc.description.abstractRun statistics about a sequence of independent geometrically distributed random variables has attracted some attention recently in many areas such as applied probability, reliability, statistical process control, and computer science. In this paper, we first study the mean and variance of the number of alternating runs in a sequence of independent geometrically distributed random variables. Then, using the relation between the model of geometrically distributed random variables and the model of random permutation, we can obtain the variance in a random permutation, which is difficult to derive directly. Moreover, using the central limit theorem for dependent random variables, we can obtain the distribution of the number of alternating runs in a random permutation.en_US
dc.language.isoen_USen_US
dc.subjectalternating runsen_US
dc.subjectgeometric random variablesen_US
dc.subjectasymptotic propertiesen_US
dc.subjectrandom permutationen_US
dc.subjectcentral limit theoremen_US
dc.titleAlternating Runs of Geometrically Distributed Random Variablesen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF INFORMATION SCIENCE AND ENGINEERINGen_US
dc.citation.volume27en_US
dc.citation.issue3en_US
dc.citation.spage1029en_US
dc.citation.epage1044en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000291237900014-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000291237900014.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.