Full metadata record
DC FieldValueLanguage
dc.contributor.authorTing, Huan-Chanen_US
dc.contributor.authorChang, Jeang-Linen_US
dc.contributor.authorChen, Yon-Pingen_US
dc.date.accessioned2014-12-08T15:11:46Z-
dc.date.available2014-12-08T15:11:46Z-
dc.date.issued2011-04-01en_US
dc.identifier.issn0916-8508en_US
dc.identifier.urihttp://dx.doi.org/10.1587/transfun.E94.A.1051en_US
dc.identifier.urihttp://hdl.handle.net/11536/9025-
dc.description.abstractFor time-delay systems with mismatched disturbances and uncertainties, this paper developed an integral sliding mode control algorithm using output information only to stabilize the system. An integral sliding surface is comprised of output vectors and an auxiliary full-order compensator. The proposed output feedback sliding mode controller can satisfy the reaching and sliding condition and maintain the system on the sliding surface from the initial moment. When the specific linear matrix inequality has a solution, our method can guarantee the stability of the closed-loop system and satisfy the property of disturbance attenuation. Moreover, the design parameters of the controller and compensator can be simultaneously determined by the solution to the linear matrix inequality. Finally, a numerical example illustrated the applicability of the proposed scheme.en_US
dc.language.isoen_USen_US
dc.subjectoutput feedbacken_US
dc.subjectfull-order compensatoren_US
dc.subjectsliding modeen_US
dc.subjectLMIen_US
dc.titleApplying Output Feedback Integral Sliding Mode Controller to Time-Delay Systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1587/transfun.E94.A.1051en_US
dc.identifier.journalIEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCESen_US
dc.citation.volumeE94Aen_US
dc.citation.issue4en_US
dc.citation.spage1051en_US
dc.citation.epage1058en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000289922100001-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000289922100001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.