完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Po-Chingen_US
dc.contributor.authorLin, Ying-Daren_US
dc.contributor.authorLai, Yuan-Chengen_US
dc.date.accessioned2014-12-08T15:11:53Z-
dc.date.available2014-12-08T15:11:53Z-
dc.date.issued2011-04-01en_US
dc.identifier.issn0018-9340en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TC.2010.95en_US
dc.identifier.urihttp://hdl.handle.net/11536/9110-
dc.description.abstractVirus scanning involves computationally intensive string matching against a large number of signatures of different characteristics. Matching a variety of signatures challenges the selection of matching algorithms, as each approach has better performance than others for different signature characteristics. We propose a hybrid approach that partitions the signatures into long and short ones in the open-source ClamAV for virus scanning. An algorithm enhanced from the Wu-Manber algorithm, namely the Backward Hashing algorithm, is responsible for only long patterns to lengthen the average skip distance, while the Aho-Corasick algorithm scans for only short patterns to reduce the automaton sizes. The former utilizes the bad-block heuristic to exploit long shift distance and reduce the verification frequency, so it is much faster than the original WM implementation in ClamAV. The latter increases the AC performance by around 50 percent due to better cache locality. We also rank the factors to indicate their importance for the string matching performance.en_US
dc.language.isoen_USen_US
dc.subjectString matchingen_US
dc.subjectautomatonen_US
dc.subjectfilteringen_US
dc.subjectvirus scanningen_US
dc.titleA Hybrid Algorithm of Backward Hashing and Automaton Tracking for Virus Scanningen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TC.2010.95en_US
dc.identifier.journalIEEE TRANSACTIONS ON COMPUTERSen_US
dc.citation.volume60en_US
dc.citation.issue4en_US
dc.citation.spage594en_US
dc.citation.epage601en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000287668100013-
dc.citation.woscount5-
顯示於類別:期刊論文


文件中的檔案:

  1. 000287668100013.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。