Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Chi-Yaoen_US
dc.contributor.authorHsu, Yung-Chien_US
dc.contributor.authorLin, Sheng-Fuuen_US
dc.date.accessioned2014-12-08T15:11:53Z-
dc.date.available2014-12-08T15:11:53Z-
dc.date.issued2011-04-01en_US
dc.identifier.issn1568-4946en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.asoc.2010.12.027en_US
dc.identifier.urihttp://hdl.handle.net/11536/9113-
dc.description.abstractReinforcement evolutionary learning using data mining algorithm (R-ELDMA) with a TSK-type fuzzy controller (TFC) for solving reinforcement control problems is proposed in this study. R-ELDMA aims to determine suitable rules in a TFC and identify suitable and unsuitable groups for chromosome selection. To this end, the proposed R-ELDMA entails both structure and parameter learning. In structure learning, the proposed R-ELDMA adopts our previous research - the self-adaptive method (SAM) - to determine the suitability of TFC models with different fuzzy rules. In parameter learning, the data-mining based selection strategy (DSS), which proposes association rules, is used. More specifically, DSS not only determines suitable groups for chromosomes selection but also identifies unsuitable groups to be avoided selecting chromosomes to construct a TFC. Illustrative examples are presented to show the performance and applicability of the proposed R-ELDMA. Crown Copyright (C) 2010 Published by Elsevier B. V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectFuzzy systemen_US
dc.subjectControlen_US
dc.subjectSymbiotic evolutionen_US
dc.subjectReinforcement learningen_US
dc.subjectAssociation rulesen_US
dc.subjectR-ELDMAen_US
dc.titleReinforcement evolutionary learning using data mining algorithm with TSK-type fuzzy controllersen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.asoc.2010.12.027en_US
dc.identifier.journalAPPLIED SOFT COMPUTINGen_US
dc.citation.volume11en_US
dc.citation.issue3en_US
dc.citation.spage3247en_US
dc.citation.epage3259en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000287479200030-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000287479200030.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.