完整後設資料紀錄
DC 欄位語言
dc.contributor.author李國明en_US
dc.contributor.authorKuo-MingLeeen_US
dc.date.accessioned2014-12-13T10:32:36Z-
dc.date.available2014-12-13T10:32:36Z-
dc.date.issued2004en_US
dc.identifier.govdocNSC93-2119-M009-004zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/91637-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=1057437&docId=201033en_US
dc.description.abstract本計畫的目的是要藉由部分已知的Far field partern 來尋找一散射問題的crack。我 們從已知的資料,也就是Far field partern U∞著手。為了找出crack,也就是此散射問題 的障礙物,我們必須解所謂的Far field 方程式 F(Γ)=U∞。因為此方程式具有非線性及 ill-posed 的性質,我們需要Newton 法(將此問題線性化)及Tikhonov regularization(使問題 可解) , 而此方法則需計算F 的Frechet 導數。當我們成功的證明F 為Frechet 可微及 歸納出F』的性質後,我們則可以建立數值的F』模型。而在此計畫的第二階段,我們 將重建一些例子藉此說明理論部分的可行性。zh_TW
dc.description.abstractThe aim of this project is to find the crack of a scattering problem with impedance boundary conditions from the knowledge of the far field pattern of the scattered field at a set of discrete points. We start with the given far field pattern u∞ . To determine the crack, we have to solve the so-called far field equation, ( ) F u∞ Γ = . Because of the non-linearity and the ill-posedness of this equation, we will use both Newton's method and Tikhonov regularization. We must therefore compute the Frechet derivative of the far field operator F (w.r.t the boundary Γ). After sucessfully clasifying the derivative of the far field operator, we can then build our numerical model. At the second stage of this project, some real reconstructions of the crack will be computed to justify our theoretical part.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject散射zh_TW
dc.subject逆問題zh_TW
dc.subject積分方程zh_TW
dc.subject邊界值問題zh_TW
dc.subjectcrackzh_TW
dc.subjectimpedancezh_TW
dc.subjectscatteringen_US
dc.subjectinverse problemen_US
dc.subjectintegral equationen_US
dc.subjectboundary value problemen_US
dc.subjectcracken_US
dc.subjectimpedanceen_US
dc.title針對一Impedance Crack的逆散射問題zh_TW
dc.titleInverse Scattering from an Impedance Cracken_US
dc.typePlanen_US
dc.contributor.department交通大學應用數學系zh_TW
顯示於類別:研究計畫


文件中的檔案:

  1. 932119M009004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。