完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 翁志文 | en_US |
dc.contributor.author | WENG CHIH-WEN | en_US |
dc.date.accessioned | 2014-12-13T10:32:46Z | - |
dc.date.available | 2014-12-13T10:32:46Z | - |
dc.date.issued | 2004 | en_US |
dc.identifier.govdoc | NSC93-2115-M009-012 | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11536/91711 | - |
dc.identifier.uri | https://www.grb.gov.tw/search/planDetail?id=1000537&docId=187914 | en_US |
dc.description.abstract | 由於同步群試設計在 DNA 序列的辨認上的應用, 近幾年來引起了廣大的注意。 我們 定義一個 「群試空間」 為一有階分序集, 並滿足對每一點考慮比它大的元素所形成 的子分序集, 都具有單元性 (atomic)。 之前我們發現 「群試空間」 可提供同步群試 設計的許多例子, 也提出了八大類「群試空間」: 「漢米敦擬陣」、 「互補空間」、 及 相對應六種型態的「古典極空間」。 這些例子所製造出來的同步群試設計, 都無法處 理當欲尋找的陽性 DNA 序列百分比較高的狀況 (如 10% 以上)。 另一方面, 這八類 「群試空間」 也都是 「交半格」 (meet semi-lattice)半格。 我們計畫尋找不具「交半 格」 特性的 「群試空間」, 我們期待此 「群試空間」 所設計出的同步群試設計能處 理陽性百分比較高的情形。 相反的, 我們也計畫從一個同步群試設計出發, 在適當 的假設下 (如每次至少有兩個待測試物, 或更推廣假設此測試是不可化約), 看看能否 建構出 「群試空間」。 我們期待這樣的研究不只有許多的實際應用, 也能解決 Edros-Frankl-Furedi 在1985 年提出的一個預測。 | zh_TW |
dc.description.abstract | The study of nonadaptive pooling design has attracted a lot of attention due to its recent application to DNA library screening. In our previous result, we defined a pooling space to be a ranked poset such that for each element the subposet induced on all elements greater or equal to it is atomic. We constructed nonadaptive pooling designs from a given pooling space. Moreover, we found eight new classes of pooling spaces. They are Hamming matroid, attenuated space, classical polar spaces of six different forms. It seems that the nonadaptive pooling designs constructed from the above pooling spaces only can deal with the situation that positive clones are in sufficiently low percentage, say under 10%. On the other hand, these pooling spaces have an additional property-they are (meet) semi-lattice. We plan to find those pooling spaces that are not semi-lattices. We expect these pooling spaces can be used to construct designs dealing with higher percentage of positives. Reversing the above study, we plan to construct a pooling space from a given nonadaptive pooling design. This can』t be done without further assumptions on the design. We expect 「row weight is at least 2$, 「the design is irreducible」 are some of these assumptions. We expect this line of study not only gives many applications to real life, but also eventually solves a conjecture of Edros, Frankl and Furedi in 1985. | en_US |
dc.description.sponsorship | 行政院國家科學委員會 | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.title | 群試設計的研究(I) | zh_TW |
dc.title | The Study of Pooling Designs(I) | en_US |
dc.type | Plan | en_US |
dc.contributor.department | 交通大學應用數學系 | zh_TW |
顯示於類別: | 研究計畫 |