Full metadata record
DC FieldValueLanguage
dc.contributor.authorShaw, Jonathanen_US
dc.contributor.authorZhong, Yu-Wuen_US
dc.contributor.authorHughes, Kevin J.en_US
dc.contributor.authorHou, Tuo-Hungen_US
dc.contributor.authorRaza, Hassanen_US
dc.contributor.authorRajwade, Shantanuen_US
dc.contributor.authorBellfy, Julieen_US
dc.contributor.authorEngstrom, James R.en_US
dc.contributor.authorAbruna, Hector D.en_US
dc.contributor.authorKan, Edwin Chihchuanen_US
dc.date.accessioned2014-12-08T15:12:04Z-
dc.date.available2014-12-08T15:12:04Z-
dc.date.issued2011-03-01en_US
dc.identifier.issn0018-9383en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TED.2010.2097266en_US
dc.identifier.urihttp://hdl.handle.net/11536/9249-
dc.description.abstractSelf-assembled monolayers (SAMs) of either ferrocenecarboxylic acid or 5-(4-Carboxyphenyl)-10,15,20-triphenylporphyrin-Co(II) (CoP) with a high-kappa dielectric were integrated into the Flash memory gate stack. The molecular reduction-oxidation (redox) states are used as charge storage nodes to reduce charging energy and memory window variations. Through the program/erase operations over tunneling barriers, the device structure also provides a unique capability to measure the redox energy without strong orbital hybridization of metal electrodes in direct contact. Asymmetric charge injection behavior was observed, which can be attributed to the Fermi-level pinning between the molecules and the high-kappa dielectric. With increasing redox molecule density in the SAM, the memory window exhibits a saturation trend. Three programmable molecular orbital states, i.e., CoP(0), CoP(1-), and CoP(2-), can be experimentally observed through a charge-based nonvolatile memory structure at room temperature. The electrostatics is determined by the alignment between the highest occupied or the lowest unoccupied molecular orbital (HOMO or LUMO, respectively) energy levels and the charge neutrality level of the surrounding dielectric. Engineering the HOMO-LUMO gap with different redox molecules can potentially realize a multibit memory cell with less variation.en_US
dc.language.isoen_USen_US
dc.subjectCoulomb blockade effecten_US
dc.subjecthigh-kappa dielectricen_US
dc.subjectnonvolatile memory devicesen_US
dc.subjectreduction-oxidation (redox)-active moleculesen_US
dc.subjectself-assembled monolayer (SAM)en_US
dc.titleIntegration of Self-Assembled Redox Molecules in Flash Memory Devicesen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TED.2010.2097266en_US
dc.identifier.journalIEEE TRANSACTIONS ON ELECTRON DEVICESen_US
dc.citation.volume58en_US
dc.citation.issue3en_US
dc.citation.spage826en_US
dc.citation.epage834en_US
dc.contributor.department電機資訊學士班zh_TW
dc.contributor.departmentUndergraduate Honors Program of Electrical Engineering and Computer Scienceen_US
dc.identifier.wosnumberWOS:000287665700035-
dc.citation.woscount9-
Appears in Collections:Articles


Files in This Item:

  1. 000287665700035.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.