完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChou, So-Hsiangen_US
dc.contributor.authorHuang, Tsung-Mingen_US
dc.contributor.authorHuang, Wei-Qiangen_US
dc.contributor.authorLin, Wen-Weien_US
dc.date.accessioned2014-12-08T15:12:04Z-
dc.date.available2014-12-08T15:12:04Z-
dc.date.issued2011-03-01en_US
dc.identifier.issn0021-9991en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jcp.2010.12.022en_US
dc.identifier.urihttp://hdl.handle.net/11536/9256-
dc.description.abstractWe develop and analyze efficient methods for computing damped vibration modes of an acoustic fluid confined in a cavity with absorbing walls capable of dissipating acoustic energy. The discretization in terms of pressure nodal finite elements gives rise to a rational eigenvalue problem. Numerical evidence shows that there are no spurious eigenmodes for such discretization and also confirms that the discretization based on nodal pressures is much more efficient than that based on Raviart-Thomas finite elements for the displacement field. The trimmed linearization method is used to linearize the associated rational eigenvalue problem into a generalized eigenvalue problem (GEP) of the form Ax = lambda"ss"x. For solving the GEP we apply Arnoldi algorithm to two different types of single matrices "ss"-1A and A"ss"-1. Numerical accuracy shows that the application of Arnoldi on A"ss"(-1) is better than that on "ss"(-1)A. (C) 2010 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectFluid-structure interactionen_US
dc.subjectFinite elementsen_US
dc.subjectRational eigenvalue problemen_US
dc.subjectTrimmed linearizationen_US
dc.subjectArnoldi algorithmen_US
dc.titleEfficient Arnoldi-type algorithms for rational eigenvalue problems arising in fluid-solid systemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jcp.2010.12.022en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL PHYSICSen_US
dc.citation.volume230en_US
dc.citation.issue5en_US
dc.citation.spage2189en_US
dc.citation.epage2206en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000287057900025-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000287057900025.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。