Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiang, WKen_US
dc.contributor.authorChen, RJen_US
dc.date.accessioned2014-12-08T15:02:14Z-
dc.date.available2014-12-08T15:02:14Z-
dc.date.issued1996-11-10en_US
dc.identifier.issn1383-7621en_US
dc.identifier.urihttp://dx.doi.org/10.1016/1383-7621(96)00019-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/928-
dc.description.abstractThe hierarchical cubic network (HCN), which takes hypercubes as basic clusters, was first introduced in [6]. Compared with the hypercube of the same size, the HCN requires only about half the number of links and provides a lower diameter. This paper first proposes a shortest-path routing algorithm and an optimal broadcasting algorithm for the HCN. We then show that the HCN is optimal fault tolerant by constructing node-disjoint paths between any two nodes, and demonstrate that the HCN is Hamiltonian. Moreover, it is shown that the average dilation for hypercube emulation on the HCN is bounded by 2. This result guarantees that all the algorithms designed for the hypercube can be executed on the HCN with a small degradation in time performance.en_US
dc.language.isoen_USen_US
dc.subjecthypercubeen_US
dc.subjectinterconnection networken_US
dc.subjectshortest-path routingen_US
dc.subjectbroadcastingen_US
dc.subjectfault toleranceen_US
dc.subjectHamiltonianen_US
dc.subjectemulationen_US
dc.titleTopological properties of hierarchical cubic networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/1383-7621(96)00019-7en_US
dc.identifier.journalJOURNAL OF SYSTEMS ARCHITECTUREen_US
dc.citation.volume42en_US
dc.citation.issue4en_US
dc.citation.spage289en_US
dc.citation.epage307en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1996VT40600004-
dc.citation.woscount8-
Appears in Collections:Articles


Files in This Item:

  1. A1996VT40600004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.