Full metadata record
DC FieldValueLanguage
dc.contributor.authorChu, Eric King-Wahen_US
dc.contributor.authorFan, Hung-Yuanen_US
dc.contributor.authorJia, Zhongxiaoen_US
dc.contributor.authorLi, Tiexiangen_US
dc.contributor.authorLin, Wen-Weien_US
dc.date.accessioned2014-12-08T15:12:07Z-
dc.date.available2014-12-08T15:12:07Z-
dc.date.issued2011-02-15en_US
dc.identifier.issn0377-0427en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.cam.2010.11.014en_US
dc.identifier.urihttp://hdl.handle.net/11536/9295-
dc.description.abstractWe extend the Rayleigh-Ritz method to the eigen-problem of periodic matrix pairs. Assuming that the deviations of the desired periodic eigenvectors from the corresponding periodic subspaces tend to zero, we show that there exist periodic Ritz values that converge to the desired periodic eigenvalues unconditionally, yet the periodic Ritz vectors may fail to converge. To overcome this potential problem, we minimize residuals formed with periodic Ritz values to produce the refined periodic Ritz vectors, which converge under the same assumption. These results generalize the corresponding well-known ones for Rayleigh-Ritz approximations and their refinement for non-periodic eigen-problems. In addition, we consider a periodic Arnoldi process which is particularly efficient when coupled with the Rayleigh-Ritz method with refinement. The numerical results illustrate that the refinement procedure produces excellent approximations to the original periodic eigenvectors. (C) 2010 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectArnoldi processen_US
dc.subjectPeriodic eigenvaluesen_US
dc.subjectPeriodic matrix pairsen_US
dc.subjectRayleigh-Ritz methoden_US
dc.subjectRefinementen_US
dc.subjectRitz valuesen_US
dc.titleThe Rayleigh-Ritz method, refinement and Arnoldi process for periodic matrix pairsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cam.2010.11.014en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICSen_US
dc.citation.volume235en_US
dc.citation.issue8en_US
dc.citation.spage2626en_US
dc.citation.epage2639en_US
dc.contributor.department數學建模與科學計算所(含中心)zh_TW
dc.contributor.departmentGraduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000287642200063-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000287642200063.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.