标题: | The Rayleigh-Ritz method, refinement and Arnoldi process for periodic matrix pairs |
作者: | Chu, Eric King-Wah Fan, Hung-Yuan Jia, Zhongxiao Li, Tiexiang Lin, Wen-Wei 數學建模與科學計算所(含中心) Graduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematics |
关键字: | Arnoldi process;Periodic eigenvalues;Periodic matrix pairs;Rayleigh-Ritz method;Refinement;Ritz values |
公开日期: | 15-二月-2011 |
摘要: | We extend the Rayleigh-Ritz method to the eigen-problem of periodic matrix pairs. Assuming that the deviations of the desired periodic eigenvectors from the corresponding periodic subspaces tend to zero, we show that there exist periodic Ritz values that converge to the desired periodic eigenvalues unconditionally, yet the periodic Ritz vectors may fail to converge. To overcome this potential problem, we minimize residuals formed with periodic Ritz values to produce the refined periodic Ritz vectors, which converge under the same assumption. These results generalize the corresponding well-known ones for Rayleigh-Ritz approximations and their refinement for non-periodic eigen-problems. In addition, we consider a periodic Arnoldi process which is particularly efficient when coupled with the Rayleigh-Ritz method with refinement. The numerical results illustrate that the refinement procedure produces excellent approximations to the original periodic eigenvectors. (C) 2010 Elsevier B.V. All rights reserved. |
URI: | http://dx.doi.org/10.1016/j.cam.2010.11.014 http://hdl.handle.net/11536/9295 |
ISSN: | 0377-0427 |
DOI: | 10.1016/j.cam.2010.11.014 |
期刊: | JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS |
Volume: | 235 |
Issue: | 8 |
起始页: | 2626 |
结束页: | 2639 |
显示于类别: | Articles |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.