标题: 空载全波形光达之波形分析、特征萃取及分类
The waveform analysis, feature extraction and classification for airborne full waveform lidar
作者: 张智安
TEO TEE-ANN
国立交通大学土木工程学系(所)
关键字: 全波形光达;波形分析;特征萃取;分類;full-waveform lidar;waveform analysis;feature extraction;classification
公开日期: 2013
摘要: 全波形光达为光达系统最新的发展趋势,传统多重回波光达仅提供三维離散点及反
射强度,而全波形光达提供完整的回波讯号。比较兩者,多重回波光达资料提供几何特
征及单点反射强度,而全波形光达提供完整的几何及回波特特征,因此全波形光达有助
于地表重建及地物判識。本计画以三年为期进行全波形光达之波形分析、特征萃取及地
物分類,全程研究重点为利用回波讯号进行资讯萃取并提升地形及地物的分辨能力。第
一年目标为建立一维波形分析的演算法,研究重点是以不同數学模式回波讯号进行分
解,以取得点位座标及波形參數,其中波形參數包含振輻、波宽、形狀因子等。第二年
目标为建立三维波形特征萃取的演算模式及地形分類,研究重点是整合时间序列之多重
完整回波,考量波形之间空间的关聯性,完成波形特征萃取,其中萃取的特征包含纹理
特征、高程变化特征、法向量角度变化特征等,最后进行地面及非地面之分類。第三年
目标为整合全波形光达及同步获取之光学影像进行地物分類,将波形分析及特征萃取的
成果做为分類的图层,以随机树分類器(Random Forest Classifier)整合光达及光谱图层进
行分類,研究重点为分析全波形特征对分類的帮助,并分析各特征的效益。
Full-waveform (FWF) lidar is an advanced technology in the development of lidar
system. Traditionally, multi-echo (ME) lidar only provides 3-D point clouds and intensity;
but FWF lidar provides the entire returned signals. ME lidar only provides geometric
property but FWF provides geometric and waveform properties. Hence, FWF lidar is able to
improve the surface reconstruction as well as landcover classification. This three-year
project plans to establish the procedure of waveform analysis, feature extraction and
classification for airborne full waveform lidar data. The core technique will be used to
improve the capability of data interpretation of FWF lidar. The works in the first year will
deal with 1-D signal analysis of waveform. This study will compare different mathematic
models in waveform decomposition. The works in the second year will include 3-D
waveform feature extraction, analyzing the spatial relationship between waveform by
combining the sequential waves. The extracted features are texture, height difference,
normal angle difference and others. The author will select the ground points using the
extracted features and geometric properties. The works in the third year will focus on the
combination of FWF lidar and multispectral image for landcover classification. The
waveform features and multispectral information are combined in Random Forest Classifier
(RFC). RFC is used to separate different types of land covers and also to evaluate the
importance of features.
官方说明文件#: NSC101-2628-E009-019-MY3
URI: http://hdl.handle.net/11536/94017
https://www.grb.gov.tw/search/planDetail?id=2855535&docId=404985
显示于类别:Research Plans