Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeng, Yuan-Hsiangen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:12:18Z-
dc.date.available2014-12-08T15:12:18Z-
dc.date.issued2008-04-15en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.amc.2007.08.073en_US
dc.identifier.urihttp://hdl.handle.net/11536/9453-
dc.description.abstractThe arrangement graph A(n,k) is a generalization of the star graph. It is more flexible in its size than the star graph. There are some results concerning hamiltonicity and pancyclicity of the arrangement graphs. In this paper, we propose a new concept called panpositionable hamiltonicity. A hamiltonian graph G is panpositionable if for any two different vertices x and y of G and for any integer l satisfying d(x,y) <= l <= vertical bar v(G)vertical bar - d(x,y), there exists a hamiltonian cycle C of G such that the relative distance between x and y on C is l. A graph G is panconnected if there exists a path of length l joining any two different vertices x and y with d(x,y) <= l <= vertical bar v(G)vertical bar - 1. We show that An, k is panpositionable hamiltonian and panconnected if k >= 1 and n - k >= 2. (c) 2007 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectarrangement graphen_US
dc.subjectpanpositionable hamiltonianen_US
dc.subjectpanconnecteden_US
dc.subjectinterconnection networken_US
dc.titlePanpositionable hamiltonicity and panconnectivity of the arrangement graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2007.08.073en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume198en_US
dc.citation.issue1en_US
dc.citation.spage414en_US
dc.citation.epage432en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000254254300037-
dc.citation.woscount11-
Appears in Collections:Articles


Files in This Item:

  1. 000254254300037.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.