Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lin, Cheng-Kuan | en_US |
dc.contributor.author | Huang, Hua-Min | en_US |
dc.contributor.author | Tan, Jimmy J. M. | en_US |
dc.contributor.author | Hsu, Lih-Hsing | en_US |
dc.date.accessioned | 2014-12-08T15:12:19Z | - |
dc.date.available | 2014-12-08T15:12:19Z | - |
dc.date.issued | 2008-04-06 | en_US |
dc.identifier.issn | 0012-365X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.disc.2007.03.072 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/9470 | - |
dc.description.abstract | A k-container C(u, v) of G between u and v is a set of k internally disjoint paths between u and v. A k-container C(u, v) of G is a k*-container if the set of the vertices of all the paths in C(u, v) contains all the vertices of G. A graph G is k*-connected if there exists a k*-container between any two distinct vertices. Therefore, a graph is 1*-connected (respectively, 2*-connected) if and only if it is hamiltonian connected (respectively, hamiltonian). In this paper, a classical theorem of Ore, providing sufficient conditional for a graph to be hamiltonian (respectively, hamiltonian connected), is generalized to k*-connected graphs. (c) 2007 Published by Elsevier B.V. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Hamiltonian connected | en_US |
dc.subject | Hamiltonian | en_US |
dc.subject | Ore theorem | en_US |
dc.subject | Menger theorem | en_US |
dc.title | On spanning connected graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.disc.2007.03.072 | en_US |
dc.identifier.journal | DISCRETE MATHEMATICS | en_US |
dc.citation.volume | 308 | en_US |
dc.citation.issue | 7 | en_US |
dc.citation.spage | 1330 | en_US |
dc.citation.epage | 1333 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000253118900030 | - |
dc.citation.woscount | 10 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.