Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Chia-Fenen_US
dc.contributor.authorChen, Bor-Liangen_US
dc.contributor.authorFu, Hung-Linen_US
dc.date.accessioned2014-12-08T15:12:19Z-
dc.date.available2014-12-08T15:12:19Z-
dc.date.issued2008-04-06en_US
dc.identifier.issn0012-365Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.disc.2007.03.062en_US
dc.identifier.urihttp://hdl.handle.net/11536/9471-
dc.description.abstractLet f be a permutation of V (G). Define delta(f)(x, y) = vertical bar d(G)(x, y) -d(G) (f (x), f (y))vertical bar and delta(f)(G) = Sigma delta(f)(x, y) over all the unordered pairs {x, y} of of distinct vertices of G. Let pi(G) denote the smallest positive value of delta(f)(G) among all the permutations f of V (G). The permutation f with delta(f) (G) = pi(G) is called a near automorphism of G. In this paper, we study the near automorphisms of cycles C and we prove that pi(C-n) = 4[n/2] - 4, moreover, we obtain the set of near automorphisms of C-n. (C) 2007 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectnear automorphismen_US
dc.titleNear automorphisms of cyclesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.disc.2007.03.062en_US
dc.identifier.journalDISCRETE MATHEMATICSen_US
dc.citation.volume308en_US
dc.citation.issue7en_US
dc.citation.spage1088en_US
dc.citation.epage1092en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000253118900008-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000253118900008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.