Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Chang, Chia-Fen | en_US |
| dc.contributor.author | Chen, Bor-Liang | en_US |
| dc.contributor.author | Fu, Hung-Lin | en_US |
| dc.date.accessioned | 2014-12-08T15:12:19Z | - |
| dc.date.available | 2014-12-08T15:12:19Z | - |
| dc.date.issued | 2008-04-06 | en_US |
| dc.identifier.issn | 0012-365X | en_US |
| dc.identifier.uri | http://dx.doi.org/10.1016/j.disc.2007.03.062 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/9471 | - |
| dc.description.abstract | Let f be a permutation of V (G). Define delta(f)(x, y) = vertical bar d(G)(x, y) -d(G) (f (x), f (y))vertical bar and delta(f)(G) = Sigma delta(f)(x, y) over all the unordered pairs {x, y} of of distinct vertices of G. Let pi(G) denote the smallest positive value of delta(f)(G) among all the permutations f of V (G). The permutation f with delta(f) (G) = pi(G) is called a near automorphism of G. In this paper, we study the near automorphisms of cycles C and we prove that pi(C-n) = 4[n/2] - 4, moreover, we obtain the set of near automorphisms of C-n. (C) 2007 Elsevier B.V. All rights reserved. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | near automorphism | en_US |
| dc.title | Near automorphisms of cycles | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1016/j.disc.2007.03.062 | en_US |
| dc.identifier.journal | DISCRETE MATHEMATICS | en_US |
| dc.citation.volume | 308 | en_US |
| dc.citation.issue | 7 | en_US |
| dc.citation.spage | 1088 | en_US |
| dc.citation.epage | 1092 | en_US |
| dc.contributor.department | 應用數學系 | zh_TW |
| dc.contributor.department | Department of Applied Mathematics | en_US |
| dc.identifier.wosnumber | WOS:000253118900008 | - |
| dc.citation.woscount | 1 | - |
| Appears in Collections: | Articles | |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.

