Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 蔡孟傑 | en_US |
dc.date.accessioned | 2014-12-13T10:38:15Z | - |
dc.date.available | 2014-12-13T10:38:15Z | - |
dc.date.issued | 1998 | en_US |
dc.identifier.govdoc | NSC87-2115-M009-011 | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11536/95158 | - |
dc.identifier.uri | https://www.grb.gov.tw/search/planDetail?id=351161&docId=62517 | en_US |
dc.description.abstract | 考慮一非緊李群G作用在一個辛流型M,保持它的辛結構ω。若ω是整的,則有一線叢L於M,並附有連絡([8],[10])。當M=Cp+q的特例,並ω為U(p,q)不變的(p,q)極辛結構,[2][11]做出以下構造:定出一個上邊緣算子及其伴隨於L系數的Dolbeault(o,k)微分式,並令Hk為所產生的L2上同調,針對於某Hermitian結構。則U(p,q)在Cp+q的作用可引出U(p,q)酉表示於Hk。在Hk出現的不可約表示的相重數也有計算過。我打算考慮這類構造於較廣泛的群G,如半單或約化,並M為我在[3],[4],[5]研究過的複齊性空間。 | zh_TW |
dc.description.sponsorship | 行政院國家科學委員會 | zh_TW |
dc.language.iso | zh_TW | en_US |
dc.subject | 辛流型 | zh_TW |
dc.subject | 李群 | zh_TW |
dc.subject | 上邊緣算子 | zh_TW |
dc.subject | 酉表示 | zh_TW |
dc.subject | 複齊性空間 | zh_TW |
dc.subject | Symplectic manifold | en_US |
dc.subject | Lie group | en_US |
dc.subject | Coboundary operator | en_US |
dc.subject | Unitary representation | en_US |
dc.subject | Complex homogeneous space | en_US |
dc.title | 從辛幾何產生的非緊群酉表示 | zh_TW |
dc.title | Unitary Representations of Non-Compact Groups from Symplectic Geometry | en_US |
dc.type | Plan | en_US |
dc.contributor.department | 交通大學應用數學系 | zh_TW |
Appears in Collections: | Research Plans |