Full metadata record
DC FieldValueLanguage
dc.contributor.authorBan, Jung-Chaoen_US
dc.contributor.authorLin, Song-Sunen_US
dc.contributor.authorLin, Yin-Hengen_US
dc.date.accessioned2014-12-08T15:12:25Z-
dc.date.available2014-12-08T15:12:25Z-
dc.date.issued2008-04-01en_US
dc.identifier.issn0218-1274en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0218127408020781en_US
dc.identifier.urihttp://hdl.handle.net/11536/9543-
dc.description.abstractThis work investigates three-dimensional pattern generation problems and their applications to three-dimensional Cellular Neural Networks (3DCNN). An ordering matrix for the set of all local patterns is established to derive a recursive formula for the ordering matrix of a larger finite lattice. For a given admissible set of local patterns, the transition matrix is defined and the recursive formula of high order transition matrix is presented. Then, the spatial entropy is obtained by computing the maximum eigenvalues of a sequence of transition matrices. The connecting operators are used to verify the positivity of the spatial entropy, which is important in determining the complexity of the set of admissible global patterns. The results are useful in studying a set of global stationary solutions in various Lattice Dynamical Systems and Cellular Neural Networks.en_US
dc.language.isoen_USen_US
dc.subjectthree-dimensional Cellular Neural Networksen_US
dc.subjectLattice Dynamical Systemsen_US
dc.subjectspatial entropyen_US
dc.subjectpattern generationen_US
dc.subjectconnecting operatoren_US
dc.titleThree-dimensional Cellular Neural Networks and pattern generation problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0218127408020781en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF BIFURCATION AND CHAOSen_US
dc.citation.volume18en_US
dc.citation.issue4en_US
dc.citation.spage957en_US
dc.citation.epage984en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000257292300004-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000257292300004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.