完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Cheng-Jianen_US
dc.contributor.authorChen, Chenghungen_US
dc.contributor.authorLee, Chiyungen_US
dc.date.accessioned2014-12-08T15:12:31Z-
dc.date.available2014-12-08T15:12:31Z-
dc.date.issued2008-03-01en_US
dc.identifier.issn1349-4198en_US
dc.identifier.urihttp://hdl.handle.net/11536/9611-
dc.description.abstractIn this paper, we propose a Wavelet-based Fuzzy Neural Network (WFNN) for classification and medical diagnosis. The proposed WFNN integrates the wavelet transform functions into a fuzzy system. We use non-orthogonal and compactly supported functions as the wavelet neural network (WNN) bases. The goal of the WFNN model combined with WNN is to improve the accuracy of function approximation. An on-line structure/parameter learning algorithm is used in the WFNN. Structure learning is based on the input partitions to determine the number of fuzzy rules and wavelet functions, and parameter learning is based on the supervised gradient descent method to adjust the shape of the membership functions and the connection weights of the wavelet neural networks. Computer simulations were conducted to test the performance and applicability of the proposed system.en_US
dc.language.isoen_USen_US
dc.subjectclassificationen_US
dc.subjectfuzzy modelen_US
dc.subjectwavelet neural networksen_US
dc.subjecton-line learningen_US
dc.titleClassification and medical diagnosis using wavelet-based fuzzy neural networksen_US
dc.typeArticleen_US
dc.identifier.journalINTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROLen_US
dc.citation.volume4en_US
dc.citation.issue3en_US
dc.citation.spage735en_US
dc.citation.epage748en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000254028000022-
dc.citation.woscount14-
顯示於類別:期刊論文