標題: 具核磁共振顯影與超音波敏感特性之奈米藥物膠囊應用於藥物控制釋放、標靶治療與即時監測---具超音波敏感特性之多功能型奈米磁性藥物膠囊的開發與研究(總計畫暨子計畫一)
Study on the Multifunctional Magnetic Nanocarriers with Ultrasound Imaging and Controlled Drug Release
作者: 陳三元
CHEN San-Yuan
國立交通大學材料科學與工程學系(所)
公開日期: 2012
摘要: 癌症,早已成為全球人類的頭號殺手。在傳統的癌症化學治療方法中,抗癌藥物不 能區分正常細胞與癌細胞,因此造成有限的治療效果與許多副作用。而在腦腫瘤的治療 方面,更因為腦血屏障(BBB)阻擋部分藥物通過的特性,縮限了治療方法的選擇性。除 了使用藥物控制腫瘤之外,外科手術也是致死率風險極高的治療方式,並且常常帶來患 者術後的副作用。 相較於一般傳統型藥物載體,對於治療腦腫瘤一直無法達到有效的療效,因為奈米 載體會被BBB 所阻擋,而本研究計畫主要是在探討及研發一種具有超音波敏感的磁性 奈米藥物膠囊,利用溫度敏感型高分子F127 與PVA 及磁性奈米氧化鐵粒子,透過親疏 水的鏈段作用力形成奈米氣泡結構,殼層的結構是由有機/無機奈米氧化鐵粒子所構成, 在其核中包覆抗癌藥物分子。並進一步藉由改變此高分子(PVA,F127)和奈米氧化鐵的 組成及結構,來設計及研發具有不同超音波敏感與磁性的多功能奈米核殼膠囊結構,並 探討其開啟BBB 的效應,使其藉由利用聚焦超音波的作用,進入到腦腫瘤部位,再輔 以利用標靶分子技術,在磁聲敏感奈米膠囊表面進行改質及修飾,以探討當生物體內 BBB 開啟時,奈米膠囊進入腦癌細胞之標靶及攝入,再透過MRI 磁振造影,來監控及 更精確的標靶腦腫瘤細胞,進而且利用超音波或外加磁場使奈米膠囊破裂,將藥物噴擠 出來,達到更有效率的癌症治療。 未來三年的研究計畫內容將針對下列幾個大方向進行相關研究: (i)利用化學合成操 控多功能型磁聲奈米藥物載體製程研究,使其核具有藥物攜帶特性,而奈米膠囊藥物載 體則具有生物相容性與磁敏感特性。(ii)利用晶體成長與高分子合成與自組裝操控,達到 磁聲奈米藥物載體的可操控特性,如載體殼厚度的操控與核組成、藥物攜帶與尺度的變 化。並使得奈米膠囊藥物載體達藥物”零釋放”特性。(iii)不同材料組成對於多功能型磁 聲奈米藥物載體之超音波特性的研究,包括其對開啟BBB 的影響與超音波控制藥物釋 放的操控性。(iv)利用MRI 監測載體藥物釋放與載體位置。(v)利用生物標靶分子(targeting ligands)接枝在多功能型磁聲奈米藥物載體的表面上,使載體具有標靶性的功能研究,以 增強奈米元件的對於癌細胞的選擇性。(vi)配合子計畫二及三, 進行磁聲敏感藥物載體於 外部超音波作用下及MRI 影像導引之藥物釋放行為及對腫瘤細胞生存之探討。
Nanotherapeutic carriers and associated therapeutic methodologies have been the subject of many studies. Great attention has recently been paid to carriers with multifunctionality, including Ultrasound imaging, controlled drug release, and targeting, in order to achieve better therapeutic efficacy with higher resolution. This research focuses on design and development of a multifunctional drug nanobubble with ultrasound controlled drug release, opening blood-brain barrier (BBB), MRI imaging and cell tracking. The device integrates nano-imaging, targeting, controlled drug delivery, and as well as the capability to open the BBB and monitor, in-situ, the drug released from the nanobubbles. The nanobuble is composed of a drug-gas core/PVA-F127- iron oxide shell nanostructure. The ligands or peptides bonded to the nanobubbles provide cell targeting for cell selectivity and therapy via in-situ drug release through use of a focused ultrasound force/magnetic field. The novel technique of MRI-guided focused ultrasound (MRIgFUS) will lead noninvasively and locally target delivery of the multifunctional ultrasound drug nanobubbles to cancer cells. Following the nanobubbles homing or uptake for a period time, drugs release from nanobubbles will be remotely triggered by the ultrasound wave or radiofrequency electromagnetic field (EMF) to eliminate directly cancer cells without affecting normal cells. The nanobubbles designed in this study has achieved its potential as a cell-based drug delivery system for nanotherapeutic applications via remote controlled drug release and in-situ monitoring capabilities.
官方說明文件#: NSC100-2320-B009-006-MY2
URI: http://hdl.handle.net/11536/96483
https://www.grb.gov.tw/search/planDetail?id=2380055&docId=377223
Appears in Collections:Research Plans