標題: | 加強式學習應用於學習控制器之研究 Reinforcement Learning in Control Applications |
作者: | 周志成 國立交通大學控制工程研究所 |
關鍵字: | 加強式學習;教導式學習;類神經網路;Reinforcement learning;Supervised learning;Neural network |
公開日期: | 1995 |
摘要: | 加強式學習與教導式學習有許多本質上的 差異,前者適用於精確的系統模式難以獲得之 問題;後者必須在正確的輸出值能夠取得的情 況下才能應用.加強式學習之研究始於1960年代, 但直至近五年方有突破性的發展,目前加強式 學習大多應用在馬可夫決策過程上,真正應用 在控制上的的例子並不多,應用技術亦未成熟, 而且目前被提出之學習法則大多有收斂速度太 慢,限制使用於離散型輸出,以及對於多重輸出 時參數調整不易等缺點.本計畫的主題在於探 討如何應用加強式學習法則於控制問題上,主 要的研究項目有:(1)以動態規劃為基礎建立加 強式學習的理論架構;(2)建立連續控制輸出與多重控制輸出之加強式學習法則;(3)探討應用 加強式學習法則之類神經網路控制技術與特性 分析;(4)實證比較加強式學習與教導式學習於 學習控制器之功效. |
官方說明文件#: | NSC84-2212-E009-012 |
URI: | http://hdl.handle.net/11536/96633 https://www.grb.gov.tw/search/planDetail?id=176016&docId=30118 |
顯示於類別: | 研究計畫 |