Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, C. S.en_US
dc.contributor.authorLeissa, A. W.en_US
dc.date.accessioned2014-12-08T15:12:36Z-
dc.date.available2014-12-08T15:12:36Z-
dc.date.issued2008-02-01en_US
dc.identifier.issn0263-8223en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.compstruct.2007.01.026en_US
dc.identifier.urihttp://hdl.handle.net/11536/9688-
dc.description.abstractAn eigenfunction expansion solution is first developed for determining the stress singularities of bimaterial bodies of revolution by directly solving the equilibrium equations of three-dimensional elasticity in terms of displacement functions. The characteristic equations are explicitly given for determining the stress singularities in the vicinity of the interface corner of two intersecting bodies of revolution having a sharp corner with free boundary conditions along the corner. The characteristic equations are found to be equivalent to a combination of the characteristic equations for plane elasticity problems and St. Venant torsion problems. The strength of stress singularities varying with the interface angles is also investigated. The first known asymptotic solutions for the displacement and stress fields are also explicitly shown for some interface angles. The present results will be useful not only for understanding the singularity behaviors of stresses in the vicinity of a revolution interface corner, but also for developing accurate numerical solutions with fast convergence for stress or vibration analysis of a body of revolution having an interface corner. (c) 2007 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectstress singularitiesen_US
dc.subjectasymptotic solutionen_US
dc.subjecteigenfunction expansion methoden_US
dc.subjecteimaterial bodies of revolutionen_US
dc.titleStress singularities in bimaterial bodies of revolutionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.compstruct.2007.01.026en_US
dc.identifier.journalCOMPOSITE STRUCTURESen_US
dc.citation.volume82en_US
dc.citation.issue4en_US
dc.citation.spage488en_US
dc.citation.epage498en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000251475600002-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000251475600002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.