Full metadata record
DC FieldValueLanguage
dc.contributor.author李柏璁en_US
dc.contributor.authorLee Po-Tsungen_US
dc.date.accessioned2014-12-13T10:40:02Z-
dc.date.available2014-12-13T10:40:02Z-
dc.date.issued2012en_US
dc.identifier.govdocNSC100-2221-E009-109-MY3zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/97078-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=2389847&docId=379900en_US
dc.description.abstract在這份報告中,我們呈現了從2011年8月到2012年5月間,本計畫第一年執行之研究成果。本計畫的主要研究課題著重開發可用以發展系統晶片之超小一維光子晶體奈米共振腔、波導與其他奈米結構,在奈米雷射、生醫感測器與光鎳夾上的應用。第一年計畫的成果主要包括幾個項目:一、建立以有限元素分析法為基礎的模擬方法,用以研究光子晶體、奈米金屬結構的光學特性,這其中包括了以馬克斯威爾壓力張量的方法,去計算奈米尺度下的光學梯度力。二、設計並實現超小元件尺寸之一維光子晶體超低閥值奈米樑雷射。透過一種貼合轉移的後製程,我們亦實現在不同撓曲程度下具有穩定雷射特性的可撓奈米雷射。三、我們提出並實現有超高光學感測靈敏度侷域性表面電漿共振的金奈米環結構陣列。四、在模擬上研究以漸變光子晶體波導實現可捕捉並傳遞奈米顆粒的奈米光鎳夾。透過可局部增強場強的奈米隙,我們更進一步的降低該設計操作所需的光功率。zh_TW
dc.description.abstractThe research results during the 1st year project period from August 2011 to May 2012 are presented in this report. The main research topics of this project are focused on devices with ultrasmall footprint, including nanolasers, optical sensors, and optical nano-tweezers, for lab-on-chip via photonic crystal (PhC) nanocavities, waveguides, and other feasible nanostructures.The main achievements in the 1st year can be divided into four parts. First, we have established the simulation environments based on finite-element method for exploring optical properties of various PhC and metallic nanostructures. It also includes a Maxwell Stress Tensor model to calculate the optical gradient force in different nanostructures. Second, we have designed and realized one-dimensional PhC nanobeam (NB) lasers with ultrasmall footprints and ultralow thresholds. Via developing directly-stamping post-fabrication process, we have also demonstrated flexible PhC NB lasers with robust lasing properties under different bending radii. Third, we have proposed and demonstrated localized surface plasmon resonance mode in novel gold nanoring array, which shows ultrahigh sensitivity in optical index sensing. Fourth, we have theoretically proposed and investigated optical nano-tweezers based on a tapered PhC waveguide, which can trap and transport nanoparticles. Furthermore, via applying a nanoslot that can enhance the mode field locally in this design, the operating power for trapping can be further reduced.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject光子晶體zh_TW
dc.subject奈米共振腔zh_TW
dc.subject半導體雷射zh_TW
dc.subject侷域性表面電漿共振zh_TW
dc.subject光波導zh_TW
dc.subject奈米光鎳夾zh_TW
dc.subject光學生醫感測元件與積體晶片zh_TW
dc.subjectPhotonic Crystalen_US
dc.subjectNanocavityen_US
dc.subjectSemiconductor Lasersen_US
dc.subjectLocalized Surface Plasmon Resonanceen_US
dc.subjectOptical Waveguideen_US
dc.subjectOptical Nano-Tweezersen_US
dc.subjectOptical Bio-Sensing Device and Integrated Chipen_US
dc.title用以發展系統晶片之超小一維光子晶體奈米共振腔與波導:雷射、感測器與光操控zh_TW
dc.titleUltrasmall One-Dimensional Photonic Crystal Nanocavities and Waveguides for Lab-On-Chip Development: Lasers, Sensors, and Optical Manipulationsen_US
dc.typePlanen_US
dc.contributor.department國立交通大學光電工程學系(所)zh_TW
Appears in Collections:Research Plans