Full metadata record
DC FieldValueLanguage
dc.contributor.authorJuang, Jonqen_US
dc.contributor.authorShieh, Shih-Fengen_US
dc.date.accessioned2014-12-08T15:12:39Z-
dc.date.available2014-12-08T15:12:39Z-
dc.date.issued2008-02-01en_US
dc.identifier.issn0022-247Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jmaa.2007.05.035en_US
dc.identifier.urihttp://hdl.handle.net/11536/9718-
dc.description.abstractLet L-A = {f(A,x):x is a partition of [0, 1]} be a class of piecewise linear maps associated with a transition matrix A. In this paper, we prove that if f(A,x) is an element of L-A, then the Liapunov exponent lambda(x) of f(A,x) is equal to a measure theoretic entropy h(mA,x) of f(A,x), where m(A,x) is a Markov measure associated with A and x. The Liapunov exponent and the entropy are computable by solving an eigenvalue problem and can be explicitly calculated when the transition matrix A is symmetric. Moreover, we also show that max(x) lambda(x) = max(x)h(mA,x) = log(lambda(1)), where lambda(1)is the maximal eigenvalue of A. (c) 2007 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectpiecewise linear mapen_US
dc.subjectLiapunov exponentsen_US
dc.subjectentropyen_US
dc.subjectergodic theoryen_US
dc.titlePiecewise linear maps, Liapunov exponents and entropyen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jmaa.2007.05.035en_US
dc.identifier.journalJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONSen_US
dc.citation.volume338en_US
dc.citation.issue1en_US
dc.citation.spage358en_US
dc.citation.epage364en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000253172100028-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000253172100028.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.