完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Juang, Jonq | en_US |
dc.contributor.author | Shieh, Shih-Feng | en_US |
dc.date.accessioned | 2014-12-08T15:12:39Z | - |
dc.date.available | 2014-12-08T15:12:39Z | - |
dc.date.issued | 2008-02-01 | en_US |
dc.identifier.issn | 0022-247X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jmaa.2007.05.035 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/9718 | - |
dc.description.abstract | Let L-A = {f(A,x):x is a partition of [0, 1]} be a class of piecewise linear maps associated with a transition matrix A. In this paper, we prove that if f(A,x) is an element of L-A, then the Liapunov exponent lambda(x) of f(A,x) is equal to a measure theoretic entropy h(mA,x) of f(A,x), where m(A,x) is a Markov measure associated with A and x. The Liapunov exponent and the entropy are computable by solving an eigenvalue problem and can be explicitly calculated when the transition matrix A is symmetric. Moreover, we also show that max(x) lambda(x) = max(x)h(mA,x) = log(lambda(1)), where lambda(1)is the maximal eigenvalue of A. (c) 2007 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | piecewise linear map | en_US |
dc.subject | Liapunov exponents | en_US |
dc.subject | entropy | en_US |
dc.subject | ergodic theory | en_US |
dc.title | Piecewise linear maps, Liapunov exponents and entropy | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jmaa.2007.05.035 | en_US |
dc.identifier.journal | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | en_US |
dc.citation.volume | 338 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 358 | en_US |
dc.citation.epage | 364 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000253172100028 | - |
dc.citation.woscount | 1 | - |
顯示於類別: | 期刊論文 |