標題: Triangle-free distance-regular graphs
作者: Pan, Yeh-jong
Lu, Min-hsin
Weng, Chih-wen
應用數學系
Department of Applied Mathematics
關鍵字: distance-regular graph;Q-polynomial;classical parameters
公開日期: 1-二月-2008
摘要: Let Gamma denote a distance-regular graph with diameter d >= 3. By a parallelogram of length 3, we mean a 4-tuple xyzw consisting of vertices of Gamma such that partial derivative(x,y)=partial derivative(z,w)=1, partial derivative(x,z)=3, and partial derivative(x,w)=partial derivative(y,w)=partial derivative(y,z)=2, where partial derivative denotes the path-length distance function. Assume that Gamma has intersection numbers a(1)=0 and a(2)not equal 0. We prove that the following (i) and (ii) are equivalent. (i) Gamma is Q-polynomial and contains no parallelograms of length 3; (ii) Gamma has classical parameters (d,b,alpha,beta) with b <-1. Furthermore, suppose that (i) and (ii) hold. We show that each of b(b+1)(2)(b+2)/c (2), (b-2)(b-1)b(b+1)/(2+2b-c (2)) is an integer and that c (2)<= b(b+1). This upper bound for c (2) is optimal, since the Hermitian forms graph Her(2)(d) is a triangle-free distance-regular graph that satisfies c (2)=b(b+1).
URI: http://dx.doi.org/10.1007/s10801-007-0072-5
http://hdl.handle.net/11536/9722
ISSN: 0925-9899
DOI: 10.1007/s10801-007-0072-5
期刊: JOURNAL OF ALGEBRAIC COMBINATORICS
Volume: 27
Issue: 1
起始頁: 23
結束頁: 34
顯示於類別:期刊論文


文件中的檔案:

  1. 000251655200002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。