Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Shuo-Hueien_US
dc.contributor.authorChan, Wenyawen_US
dc.contributor.authorChen, Lin-Anen_US
dc.date.accessioned2014-12-08T15:12:40Z-
dc.date.available2014-12-08T15:12:40Z-
dc.date.issued2008-02-01en_US
dc.identifier.issn0026-1394en_US
dc.identifier.urihttp://dx.doi.org/10.1088/0026-1394/45/1/N01en_US
dc.identifier.urihttp://hdl.handle.net/11536/9742-
dc.description.abstractClassically the non-parametric coverage interval is estimated by empirical quantiles. We introduce an alternative way for estimating the coverage interval by symmetric quantiles given by Chen and Chiang (1996 J. Nonparametric Stat. 7 171-85). We further show that this alternative has a better precision in the sense that its asymptotic variances are smaller than the classical one.en_US
dc.language.isoen_USen_US
dc.titleA non-parametric coverage intervalen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/0026-1394/45/1/N01en_US
dc.identifier.journalMETROLOGIAen_US
dc.citation.volume45en_US
dc.citation.issue1en_US
dc.citation.spageL1en_US
dc.citation.epageL4en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000252951400001-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000252951400001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.