完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHu, Jwu-Shengen_US
dc.contributor.authorLiu, Wei-Hanen_US
dc.contributor.authorCheng, Chieh-Chengen_US
dc.date.accessioned2014-12-08T15:12:42Z-
dc.date.available2014-12-08T15:12:42Z-
dc.date.issued2008-01-15en_US
dc.identifier.issn0167-8655en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.patrec.2007.09.007en_US
dc.identifier.urihttp://hdl.handle.net/11536/9768-
dc.description.abstractIn this work, an indoor sound field feature matching method is proposed and is applied to detect a mobile robot's location and orientation. The sound field feature, captured from a sound source to a pair of microphones, contains the dynamic of the propagation path. Because of the complexity of indoor environment, the features from different path can be distinguished using appropriate models. Gaussian mixture models are utilized in this paper to characterize the phase difference and magnitude ratio distributions between the microphone pair in consecutive data frames. The application provides an alternative thinking compared with traditional methods such as direction of arrival (DOA) using propagation delay. They usually suffer from reverberation, non-line-of-sight and microphone mismatch problems. The experimental results show the method not only has a high recognition rate for robot's location and orientation, but also is robust against environmental noise. (c) 2007 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectGMMen_US
dc.subjectrobot localizationen_US
dc.subjectrobot's orientation detectionen_US
dc.titleIndoor sound field feature matching for robot's location and orientation detectionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.patrec.2007.09.007en_US
dc.identifier.journalPATTERN RECOGNITION LETTERSen_US
dc.citation.volume29en_US
dc.citation.issue2en_US
dc.citation.spage149en_US
dc.citation.epage160en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000252346600006-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000252346600006.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。