完整後設資料紀錄
DC 欄位語言
dc.contributor.author符麥克en_US
dc.contributor.authorFUCHS MICHAELen_US
dc.date.accessioned2014-12-13T10:41:09Z-
dc.date.available2014-12-13T10:41:09Z-
dc.date.issued2012en_US
dc.identifier.govdocNSC101-2115-M009-010zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/98244-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=2584101&docId=389511en_US
dc.description.abstract在近期的一篇論文中,Kim和Nakada證明了一個在有限體之下,正規勞倫級數之非齊次丟番圖逼近的Kurzweil定理。在這個計畫中,我們打算歸納出他們的結論。此外,我們打算證明強大數法則,以及討論一些對於逼近函數的種種限制下類似的結果。zh_TW
dc.description.abstractIn a recent paper, Kim and Nakada proved an analogue of Kurzweil’s theorem for metric inhomogeneous Diophantine approximation of formal Laurent series over a finite field. In this project, we intend to generalize their result to simultaneous inhomogeneous Diophantine approximation. Moreover, we plan to prove strong law of large numbers with error terms for the number of solutions and discuss similar results for various restrictions on the approximation function.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.title正規勞倫級數之度量非齊次丟番圖逼近zh_TW
dc.titleMetric Inhomogeneous Diophantine Approximation for Formal Laurent Seriesen_US
dc.typePlanen_US
dc.contributor.department國立交通大學應用數學系(所)zh_TW
顯示於類別:研究計畫


文件中的檔案:

  1. 1012115M009010.PDF

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。