标题: | 前瞻性云端动态防护、安全授权、与风险评估---子计画四:虚拟化资料中心之在线式未知恶意程式侦测与隔离 Online Detection and Containment of Unknown Malware in Virtualized Datacenter Environment |
作者: | 吴育松 Wu Yu-Sung 国立交通大学资讯工程学系(所) |
公开日期: | 2014 |
摘要: | 在实际营运系统上的线上恶意软体保护机制主要是在软体执行前,透过如特征码 比对、启发式侦测或程式码模拟等方法来判断其是否为恶意软体。这些侦测技术的效 能非常好。对已知恶意软体的侦测率也非常的高,但面对未知的恶意软体其侦测率却 无法有令人满意的表现。 许多基于行为模式分析恶意软体的研究指出,未知的恶意软体虽然在程式码的体 现上千变万化,但在关键的行为表现上常会与现有的恶意软体具有相似之处,比如说 因为他们背后的目的也很相似(例如:散布垃圾邮件),或是恶意软体在撰写时有使用 部分的共同程式码等。然而,要分析恶意软体的行为需要先将它运行起来,考虑到恶 意软体可能对系统带来的损害,基于行为模式的恶意软体分析多半是进行于封闭的实 验室环境中,不会在实际营运的系统上进行。 本计昼的目标是建立一个透过行为模式,动作于实际营运环境中的线上未知恶意 软体侦测与隔离系统。这个系统将会基于我们先前所开发的Hypervisor IDS / IPS技 术,针对云端虚拟化资料中心内实际营运系统提供线上的恶意软体侦测与隔离保护。 这个计昼主要的挑战包括如:监控恶意软体的运行过程对系统效能会是一个不小的负 担,如何用最有效率的方法来达到准确的行为分析是我们需要克服的挑战。其次,现 有基于行为模式的恶意软体分析工具的比对演算法多是用于离线的分析,在效能上恐 无法满足在线式即时侦测的需求。我们需要调整这些演算法,使他们满足在线式侦测 所需要的效能。最后,在行为观察的同时,潜在的恶意软已在实际营运的系统上运行 一阵子了。当确定其是恶意软体的时候,该软体恐已于系统多处造成伤害。要如何确 保系统内重要资料或是资源的安全以及清理恶意软体所造成的伤害等工作也是本计昼 所必须处理的议题。 Online malware protection for production systems has been relying on detection techniques such as signature matching, heuristic, or code emulation to identify malware binaries prior to their execution or access. These detection techniques are very efficient and have decent detection accuracy with respect to well-known malware. However, these detection techniques all perform poorly with respect to unknown malware, where the corresponding signature or heuristic pattern is not known yet. Research in the area of malware behavior analysis has shown that unknown malware can often feature behavior that is similar to some existing malware. They are likely designed for the same malicious purposes (e.g. e-mail spamming). Or, it is also quite common that one is in fact a variant of the other. However, the extraction of behavior pattern requires executing the malware in question. This cannot be safely carried out on a production system, as the malware may cause damages to the system. Along with the issue of significant performance overhead, behavior-based malware analysis has not yet been applied to production system for online malware protection. The goal of this project is to develop a behavior-based unknown malware protection system. The system will be built on top of our hypervisor IDS/IPS infrastructure to provide online malware protection for production systems running in a virtualized datacenter environment. There are many challenges that need to be addressed in developing such a system. First, the extraction of malware's runtime behavior is a costly process (i.e. per-instruction tracing, taint-analysis, and etc.) How to attend an accurate behavior profile with minimal performance overhead is an issue we need to address. Second, existing malware behavior matching algorithms are mainly used in an offline setting. We need to adapt these algorithms to make them efficient enough for suiting the online detection mode. Third, the extraction of behavior requires running a potential malware on the production system. At the time when a malware is identified, damages could have been done to the system already. How to ensure the safety of critical system component and be able to clean up any aftereffect from running the malware are also challenges that we need to address. |
官方说明文件#: | NSC101-2221-E009-076-MY3 |
URI: | http://hdl.handle.net/11536/98272 https://www.grb.gov.tw/search/planDetail?id=8108490&docId=429114 |
显示于类别: | Research Plans |