标题: | 量子线矽、锗、砷化镓奈米CMOS元件内电荷传输模拟与可靠性 &Quot;Quasi-Ballistic Transport Simulation and Reliability in Si, Ge, Gaas Nano-Cmos Devices Including Quantum-Wire Structures&Quot; |
作者: | 汪大晖 WANG TAHUI 国立交通大学电子工程学系及电子研究所 |
关键字: | surrounding gate CMOS (FinFET);quantum wire;quasi-ballistic transport;Monte Carlo;reliability (BTI;RTN);characterization;Si/Ge/GaAs |
公开日期: | 2011 |
摘要: | 当 CMOS 元件微缩至22 奈米以下,无論在元件结构、材料及传输物理方面均将产生重大变 化;(i)元件结构将由目前之平面式闸极改为围绕式闸极(例如 FinFET 或nanowire FET),在此种 元件内,通道电荷在兩个方向将受到量子局限而具备量子线性质,(ii)通道材料将包括strained Si, Ge, GaAs 以提升电荷传输速度,(iii)当通道长度小于22 奈米,电荷传输将呈现非平衡传输 (non-equilibrium transport)特性,传统之drift-diffusion 观念将不再适用。而在可靠性方面, bias-temperature-instability (BTI)及元件杂讯(random telegraph noise (RTN))为奈米元件兩项主要可 靠性议题,由于此兩种物理机制均与通道内电流之percolation path 有关,当元件结构由平面式改 为量子线元件,由于具有不同的percolation effect,上述兩项物理机制亦将有所改变。 面对以上重大变化,在电荷传输方面,吾人将发展 Si, Ge, GaAs 量子线蒙地卡羅模拟。模拟 程式将包括三个部份;(i)一维电子(和电洞)能带计算,(ii) 一维电子(和电洞)之载子碰撞机制及蒙 地卡羅模拟程式及(iii)通道方向电场计算。有别于一般量子线蒙地卡羅模拟,在本计划内吾人将 发展一适合22 奈米以下量子线模拟方法,以研究元件内之非平衡传输。在量测方面,吾人将量 测FinFET 之电荷传输參數(例如back-scattering 系數),并和理論比对。而在可靠性方面,吾人将 利用特殊组装电路量测FinFET 元件内之BTI 与RTN,并藉由數值模拟,发展电荷捕捉/释放之随 机程序模型,并研究平面式与围绕式闸极元件内此兩种可靠性物理机制之差異。 As CMOS devices are scaled beyond 22nm, drastic changes and new challenges are expected in device structures, channel materials and carrier transport and reliability physics. (i) In device structures, conventional planar gates will be replaced by surrounding gates such as FinFETs or nanowire FETs. In FinFET devices, carriers are quantum-mechanically confined in two directions and thus possess quantum-wire transport properties. (ii) To further improve device performance, advanced channel materials, for example, strained Si, Ge or GaAs, will be implemented. (iii) In ultra-short channel CMOS, carriers move in a non-equilibrium condition with an electric field. Conventional drift and diffusion concepts are no longer valid. Instead, new transport phenomena such as quasi-ballistic motion or velocity overshoot will become prominent in nano-scale CMOS. In transport simulation, we will develop a quantum-wire Monte Carlo simulation including Si, Ge and GaAs three materials. We will develop a particular simulation flow, which is suitable for quasi-ballistic transport simulation in 22nm FinFET devices and beyond. Our simulation flow features three ingredients, quantum-wire band-structure solver (coupled 2D Poisson and Schrodinger Eqs.), Monte Carlo simulation including one-dimensional scattering processes and a Poisson solver for an electric field in the channel. All of the three parts will be solved self-consistently in order for a device biased in saturation region. In addition, we will characterize transport parameters in FinFET CMOS such as back-scattering coefficient and ballistic injection efficiency and compare with our simulation. With respect to reliability in quantum structure CMOS, our study will be focused on bias temperature instability (BTI) and random telegraph noise (RTN) in FinFET devices. We will measure individual carrier captures and emissions in gate dielectric during BTI stress and in relaxation. A stochastic model for carrier trapping/detrapping will be developed. We will also perform numerical device simulation to analyze current-path percolation effects on RTN and BTI. We will explore and compare the characteristics and physical mechanisms of these two reliability issues in conventional planar gate FETs and surrounding gate FETs with quantum structures. |
官方说明文件#: | NSC99-2221-E009-169-MY3 |
URI: | http://hdl.handle.net/11536/99063 https://www.grb.gov.tw/search/planDetail?id=2220327&docId=355888 |
显示于类别: | Research Plans |