标题: 低维度扰动到高维度系统的混沌动态
Chaotic Dynamics of High-Dimensional Systems Perturbed from Low-Dimensional Ones
作者: 李明佳
LI MING-CHIA
国立交通大学应用数学系(所)
公开日期: 2011
摘要: 延续稍早前的论文 [1, 2, 3], 我们打算进一步研究低维度局部系统扰动到高维度系统的混沌问题, 分别以下列不同的假设情况,做出结论的推广:
(SP1) 当局部函数可化成高阶差分方程时;
(SP2) 当局部函数具有稳定和不稳定方向的双曲不变集时;
(SP3) 当局部函数具有二次锥条件的非双曲不变集时;
(SP4) 当局部函数具有伪轨性质时;
(SP5) 当局部函数具有snap-back repeller拓扑属性时;
(SP6) 当低维度系统扰动到无限维系统时;
(SP7) 应用上述所得结论到多维度网格系统、反应扩散系统离散模型、及实质的经济模型等。
[1] M.-C. Li and M. Malkin, 2006, Topological horseshoes for perturbations of singular difference equations, Nonlinearity, 19, 795-811.
[2] J. Juang, M.-C. Li, and M. Malkin, 2008, Chaotic difference equations in two variables and their multidimensional perturbations, Nonlinearity, 21, 1019-1040.
[3] M.-C. Li, M.-J. Lyu and P. Zgliczynski, 2008, Topological entropy for multidimensional perturbations of snap-back repellers and one-dimensional maps, Nonlinearity, 21, 2555-2567.
Continuing our earlier works [1,2,3], we plan to study multidimensional perturbations from a low-dimensional local map to a high-dimensional map and generalize results in the following subprojects:
(SP1) when the local difference equation is high-order;
(SP2) when the local map has hyperbolic invariant set with both stable and unstable directions;
(SP3) when the local map has non-hyperbolic invariant set with quadratic cone condition;
(SP4) when the local map has shadowing property;
(SP5) when the local map has topological property of snap-back repeller;
(SP6) when the low-dimensional system is perturbed to infinite-dimensional ones;
(SP7) when the above results are applied to high-dimensional lattice systems, numerical models of reaction-diffusion systems, and practical economic models, etc.
[1] M.-C. Li and M. Malkin, 2006, Topological horseshoes for perturbations of singular difference equations, Nonlinearity, 19, 795-811.
[2] J. Juang, M.-C. Li, and M. Malkin, 2008, Chaotic difference equations in two variables and their multidimensional perturbations, Nonlinearity, 21, 1019-1040.
[3] M.-C. Li, M.-J. Lyu and P. Zgliczynski, 2008, Topological entropy for multidimensional perturbations of snap-back repellers and one-dimensional maps, Nonlinearity, 21, 2555-2567.
官方说明文件#: NSC99-2115-M009-004-MY2
URI: http://hdl.handle.net/11536/99093
https://www.grb.gov.tw/search/planDetail?id=2219784&docId=355743
显示于类别:Research Plans