标题: | 低维度扰动到高维度系统的混沌动态 Chaotic Dynamics of High-Dimensional Systems Perturbed from Low-Dimensional Ones |
作者: | 李明佳 LI MING-CHIA 国立交通大学应用数学系(所) |
公开日期: | 2011 |
摘要: | 延续稍早前的论文 [1, 2, 3], 我们打算进一步研究低维度局部系统扰动到高维度系统的混沌问题, 分别以下列不同的假设情况,做出结论的推广: (SP1) 当局部函数可化成高阶差分方程时; (SP2) 当局部函数具有稳定和不稳定方向的双曲不变集时; (SP3) 当局部函数具有二次锥条件的非双曲不变集时; (SP4) 当局部函数具有伪轨性质时; (SP5) 当局部函数具有snap-back repeller拓扑属性时; (SP6) 当低维度系统扰动到无限维系统时; (SP7) 应用上述所得结论到多维度网格系统、反应扩散系统离散模型、及实质的经济模型等。 [1] M.-C. Li and M. Malkin, 2006, Topological horseshoes for perturbations of singular difference equations, Nonlinearity, 19, 795-811. [2] J. Juang, M.-C. Li, and M. Malkin, 2008, Chaotic difference equations in two variables and their multidimensional perturbations, Nonlinearity, 21, 1019-1040. [3] M.-C. Li, M.-J. Lyu and P. Zgliczynski, 2008, Topological entropy for multidimensional perturbations of snap-back repellers and one-dimensional maps, Nonlinearity, 21, 2555-2567. Continuing our earlier works [1,2,3], we plan to study multidimensional perturbations from a low-dimensional local map to a high-dimensional map and generalize results in the following subprojects: (SP1) when the local difference equation is high-order; (SP2) when the local map has hyperbolic invariant set with both stable and unstable directions; (SP3) when the local map has non-hyperbolic invariant set with quadratic cone condition; (SP4) when the local map has shadowing property; (SP5) when the local map has topological property of snap-back repeller; (SP6) when the low-dimensional system is perturbed to infinite-dimensional ones; (SP7) when the above results are applied to high-dimensional lattice systems, numerical models of reaction-diffusion systems, and practical economic models, etc. [1] M.-C. Li and M. Malkin, 2006, Topological horseshoes for perturbations of singular difference equations, Nonlinearity, 19, 795-811. [2] J. Juang, M.-C. Li, and M. Malkin, 2008, Chaotic difference equations in two variables and their multidimensional perturbations, Nonlinearity, 21, 1019-1040. [3] M.-C. Li, M.-J. Lyu and P. Zgliczynski, 2008, Topological entropy for multidimensional perturbations of snap-back repellers and one-dimensional maps, Nonlinearity, 21, 2555-2567. |
官方说明文件#: | NSC99-2115-M009-004-MY2 |
URI: | http://hdl.handle.net/11536/99093 https://www.grb.gov.tw/search/planDetail?id=2219784&docId=355743 |
显示于类别: | Research Plans |