Full metadata record
DC FieldValueLanguage
dc.contributor.author黃慧玲en_US
dc.contributor.authorHunag Hui-Lingen_US
dc.date.accessioned2014-12-13T10:42:32Z-
dc.date.available2014-12-13T10:42:32Z-
dc.date.issued2011en_US
dc.identifier.govdocNSC100-2221-E009-130zh_TW
dc.identifier.urihttp://hdl.handle.net/11536/99221-
dc.identifier.urihttps://www.grb.gov.tw/search/planDetail?id=2342550&docId=369355en_US
dc.description.abstractDNA 結合區域/蛋白質是在細胞中扮演著各種生物必須功能的重要蛋 白質,例如DNA 的轉錄。最近我們發表一篇論文以支持向量分類器為基礎 的高準確度預測DNA 結合區域的預測方法,此研究在生物資訊研究領域中 是一項重要的課題。然而,大部分目前已知使用向量支持分類器為基礎的 方法中,都使用到大量的特徵及數值作為分類依據,這些方法雖然具有良 好的分類效能,但對於所學習的特徵資料,卻無法提供良好的解讀性。 本計畫將會集中研究在建立可解讀的模糊邏輯規則,以增進預測和分 析的DNA 結合區域分類的知識。本研究計畫過程分為五個階段:1)利用機 械學習方法來區別有結合及不會結合的區域中,所具有富含物化特性的資 訊。2)提出一個運用物化特性為特徵的演化式模糊規則分類器,此分類器 會收集可解讀的模糊規則。3)建立一套可解讀的模糊規則,用以作為預測 及分析DNA 的區域的知識庫。4)設計一個利用知識庫所建立的模糊規則統 整式分類器。5)確認DNA 結合區域知識庫,確認方法如下:a)分析DNA 結 合蛋白的結構,b)分析已知的DNA 結合位置,以及c)由實驗文獻探究已知 的會影響DNA 結合的物化特性。 為驗證本計畫所提出的方法,我們已得到的正面初步結果有:1)將會 得到一組物化特性的組合,2)建立一套演化式模糊規則分類器的原型,以 及3)一組簡潔又帶有知識且具有高度預測性的模糊規則。而本計劃最重要 且最具有貢獻的任務就是驗證所提出的知識規則庫,並且提供一套用以預 測及分析DNA 結合區域/蛋白質的系統。這套系統也同時可以利用可解讀的 模糊規則以解釋預測的結果,並同時輸出決策規則。zh_TW
dc.description.abstractDNA-binding domains/proteins are functional proteins in a cell, which plays a vital role in various essential biological activities, such as DNA transcription. Recently, we published an accurate support vector machine (SVM) based method for predicting DNA-binding domains which is an important topic in bioinformatics researches. However, most of existing methods used SVM with many features of real values as a classifier which are good at prediction but not at human interpretability. This project aims to establish an interpretable fuzzy-rule knowledge base for predicting and analyzing DNA-binding domains. The research procedure consists of five stages as follows. 1) Identify informative physicochemical properties of sequences by way of distinguishing binding and non-binding domains using a machine learning approach. 2) Propose an evolutionary fuzzy-rule classifier to collect interpretable fuzzy rules based on the identified physicochemical properties. 3) Establish an interpretable fuzzy-rule knowledge base for predicting and analyzing DNA-binding domains. 4) Design an ensemble classifier for prediction using the fuzzy rules of the knowledge base. 5) Validate the DNA-binding knowledge by a) analyzing structures of DNA-binding proteins, b) analyzing the known DNA-binding sites, and c) investigating known physicochemical properties of affecting the DNA binding by experiments from literature. For validating the proposed approach, we have some positive preliminary results: 1) a set of potential physicochemical properties, 2) a prototype of the evolutionary fuzzy-rule classifier, and 3) a feasible, compact and accurate set of fuzzy rules. The most important task is to carefully validate the knowledge base and provide a system for predicting and analyzing DNA-binding domains/proteins. The system can output the decision rules using the interpretable fuzzy rules to explain the prediction results.en_US
dc.description.sponsorship行政院國家科學委員會zh_TW
dc.language.isozh_TWen_US
dc.subject去氧核醣核酸結合區域zh_TW
dc.subject特徵選擇zh_TW
dc.subject基因演算法zh_TW
dc.subject支援向量機zh_TW
dc.subject模糊邏輯規則zh_TW
dc.subject知識擷取zh_TW
dc.subject物化特性zh_TW
dc.subject特異位置分數矩陣zh_TW
dc.subject蛋白質功能預測zh_TW
dc.subjectDNA-binding domainsen_US
dc.subjectfeature selectionen_US
dc.subjectgenetic algorithmen_US
dc.subjectsupport vector machineen_US
dc.subjectfuzzy rulesen_US
dc.subjectknowledge acquisitionen_US
dc.subjectphysicochemical propertiesen_US
dc.subjectposition specific scoring matrixen_US
dc.subjectprotein function predictionen_US
dc.title建構可解讀模糊規則知識庫來預測與分析DNA結合的蛋白質zh_TW
dc.titleEstablishing an Interpretable Fuzzy-Rule Knowledge Base for Predicting and Analyzing DNA-Binding Domainsen_US
dc.typePlanen_US
dc.contributor.department國立交通大學生物科技學系(所)zh_TW
Appears in Collections:Research Plans


Files in This Item:

  1. 1002221E009130.PDF

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.