标题: | 从p-adic 可约群诱导出的复体之Zeta 函数和上同调群 Zeta Functions and Cohomology of Complexes from P-Adic Reductive Groups |
作者: | 康明轩 Kang Ming-Hsuan 国立交通大学应用数学系(所) |
关键字: | 李群;上同调群;p-adic Lie group;zeta function;cohomology;building |
公开日期: | 2011 |
摘要: | Ihara zeta 函数已经广受研究的题目,它是一个在一维复体上的几何算术函数。 Ihara 的定理透过 trace formula 给了局部的 L 函数和 zeta 函数之间的关联。 也就是给了几何与质谱的关联性。近几年对于二维复统体上的 zeta 函数,使用 组合以及表现论的方法,可以得到Ihara 定理的推广。但是对于更一般的复体, 这些方法都有它的困难性。 在第一年,我们计画研究从一般可约群来的复体的上的 zeta 函数。透过在 lattices 上定义特殊的上同调理论以及伪Laplacian 算子,可以得到这些 zeta 函数 交错乘积与局部 L‐函数的关联性。 在第二年,我们将研究伪Laplacian 算子的特性。对于一维与二维的情形,我们 已经知道他和古典的Laplcian 一般,会有 Hodge decomposition 的性质。对于一 般的情形,透过群表现理论,我们可能计算伪Laplacian 的特征值来证明这这个 性质。 Ihara zeta function has been widely investigated for years, which can be regarded as a geometric counting function on a 1-complex arising from PGL2. Ihara theorem can be reformulated in terms of the trace formula, which describes the relation between Ihara zeta function and the local L-factor. Zeta functions of 2-complexes arising from PGL3 and PGSP4 are studied recently by combinatoric and representation-theoretic approaches. However, each approach has its own difficulty to apply to general p-adic Lie groups. In the first year, we plan to investigate the zeta functions on complexes from general Lie groups and theirs relation to local L-factors using cohomology theory on lattices. We have shown that this method can be applied to PGLn for any n and we expect it can be applied to other families of Lie groups. Moreover, we would also like to study if there exists different kind of zeta identity related to the local L-factors associated to other representations. In the second year, we plan to study the relation between the cohomology theory we used and the usual cohomology theory on complexes. Especially, we expect that the pseudo -Laplacian we defined has Hodge decomposition as the usual Laplacian. It may be proved by computing the eigenvalues of the pseudo-Laplacian. |
官方说明文件#: | NSC100-2115-M009-008-MY2 |
URI: | http://hdl.handle.net/11536/99470 https://www.grb.gov.tw/search/planDetail?id=2370274&docId=375211 |
显示于类别: | Research Plans |