標題: 學研合作計畫-微流體生殖醫學-仿生、檢測與組織工程( I )
Microfluidic Reproductive Medicine- Biomimetics, Detection, and Tissue Enineering
作者: 范士岡
Fan Shih-Kang
國立交通大學材料科學與工程學系(所)
關鍵字: 微流體;生殖醫學;仿生;免疫感測;組織工程;體外受精;Microfluidics;Reproductive Medicine;Biomimetics;Immunosensor;Tissue Engineering;In Vitro Fertilization
公開日期: 2011
摘要: 體外受精(IVF、或常稱為試管嬰兒)是二十世紀最令人振奮的科學發展之一,而此技術將持續對人類的生命有重大的衝擊。而IVF先驅者-Robert Edwards博士也於2010年榮獲諾貝爾生理醫學獎。人體IVF技術取代輸卵管之功能,而以人工方式,在一培養皿(Petri dish)中以礦物油覆蓋、且含有適當化學組成之靜態液滴(20 to 950 ml),進行胚胎授精、受精、培養。然而在輸卵管內,胚胎在著床前不但經歷化學(荷爾蒙)的刺激,更經歷物理的刺激。因此胚胎在輸卵管中的運動,合理地被視為與胚胎發展有關。人體IVF的受孕率,自1980年的16.5%提升至1983年近30%,而在2008年趨緩於8.8-47.6%(與年齡相關)。為增加IVF成功率,通常會植入多囊胚,然而此舉會增加多胞胎的危險。直到最近才開始有學者將仿生與微流體技術與IVF結合。微流體因與輸卵管有相似尺寸,因此可提供受精卵與胚胎更接近母體的物理與化學條件。因此以微流道為主的微流體技術已開始應用於精蟲處理、卵子成熟、受精、與胚胎培養。然而此研究尚屬開始階段,而有部份結果彼此矛盾。總的來說,許多研究結果得到較高之胚胎發展率,而將之歸功於營養物與廢物之有效循環;而將部份得到低胚胎發展率之結果歸咎於流體對胚胎之剪應力、與流體移除了必要的自體分泌之生長因子。因此將微流道之微流體技術應用於IVF,仍須更多研究之投入。因此我們提出動態的IVF(DIVF),以介電濕潤、介電泳等技術驅動一動態液滴,以期能在體外更模仿輸卵管。我們是第一個以數位微流體技術研究DIVF的團隊。而此微液滴技術將承襲過去幾十年來發展之IVF技術,但加上新的元素(動態),我們相信會比微流道技術有更強力的後盾。我們的目標為(1)發展數位微流體之模組化實驗室晶片系統,以(2)模仿並進行輸卵管中胚胎之授精、受精、與培養,(3)並即時診斷胚胎之發展狀況,而提升IVF成功率。並且,我們期望以此可擴充之模組,強化目前IVF所用microdrop法。以數位微流體技術,提供各式流體操控技術,以模仿體內如纖毛對胚胎之作用,並簡化重複之流體交換步驟。更期望以微小且定量之液滴,提高胚胎發展率,降低受精所需精蟲濃度。在此整合計畫中,我們在四個子計畫中進行四個重要工作:流體操控(子計畫一);授精與受精(子計畫二);培養與共養(子計畫三);診斷與整合(子計畫四)。四個子計畫以適當之模組界面互相連結,並獨立且互補地進行。子計畫一提供基本流體功能驅動授精、培養液、檢測試劑等,並驅動胚胎與抗體修飾之微粒。子計畫二與子計畫三將在子計畫一準備好的定量水油比例之包覆式微液滴中,進行授精/受精與培養/共養。而子計畫二與子計畫三研究之受精卵與囊胚將以子計畫四之化學、物理、形態之診斷方式進行檢測。我們期望以此動態、仿生、回授控制之微液滴中,提高鼠與豬的胚胎發展率。
In vitro fertilization (IVF) bypasses the female Fallopian tube (oviduct) and manually inseminates, fertilizes, and cultivates embryos in an oil-covered static microdrop (20 to 950 μl) containing proper chemicals on a Petri dish and manipulated by manual pipetting up to 20 times. However, an embryo experiences not only chemical (hormonal) but also mechanical stimuli in the Fallopian tube before implantation. It is postulated that the mechanical actions in the Fallopian tube might play an important role in embryo development. Therefore, the pregnancy rate rose from 16.5% in 1980, rapidly to almost 30% in 1983, and saturated at 8.8% and 47.6% depending on the patients’ ages in 2008. For the still low pregnancy and success rate (live births per number of embryos transferred), multiple embryos are usually transferred, which increases the rate of multiple births and the morbidity.Hence, we propose a dynamic IVF (DIVF) platform to better mimic the Fallopian tube with dynamic microdrops driven by electrowetting and/or dielectrophoresis. We will be the first team to study DIVF on a digital microfluidics platform based on the previous microdrop IVF studies, especially the developed methodologies, in the past several decades. The goal of this project is (1) developing lab-on-a-chip (LOC) modules based on digital (droplet-based) microfluidic techniques (2) to mimic the in vivo Fallopian tube conditions for embryo insemination, fertilization, and culture and (3) to diagnose the embryos on chip monitoring the development status of the embryo for a higher IVF success rate.In addition, we aim to develop a digital microfluidic IVF system with expandable modules to improve the current microdrop method. With dynamically controlled droplets, more complicated fluidic functions are possible, which provides an in vivo-mimicking condition (e.g., ciliary beating) for embryos and simplifies the repeated washing and media exchange steps. The aliquot droplets with small and precise volumes will be investigated to achieve a higher development rate with a lower sperm concentration.
官方說明文件#: NSC100-2120-M009-009
URI: http://hdl.handle.net/11536/99689
https://www.grb.gov.tw/search/planDetail?id=2359407&docId=373657
顯示於類別:研究計畫