Full metadata record
DC FieldValueLanguage
dc.contributor.authorShih, Lun-Minen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorHsu, Lih-Hsingen_US
dc.date.accessioned2014-12-08T15:12:56Z-
dc.date.available2014-12-08T15:12:56Z-
dc.date.issued2007-12-31en_US
dc.identifier.issn0020-0190en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ipl.2007.07.009en_US
dc.identifier.urihttp://hdl.handle.net/11536/9993-
dc.description.abstractXu et al. showed that for any set of faulty edges F of an n-dimensional hypercube Q(n) with vertical bar F vertical bar <= n - 1, each edge of Q(n) - F lies on a cycle of every even length from 6 to 2(n), n >= 4, provided not all edges in F are incident with the same vertex. In this paper, we find that under similar condition, the number of faulty edges can be much greater and the same result still holds. More precisely, we show that, for up to vertical bar F vertical bar = 2n - 5 faulty edges, each edge of the faulty hypercube Q(n) - F lies on a cycle of every even length from 6 to 2(n) with each vertex having at least two healthy edges adjacent to it, for n >= 3. Moreover, this result is optimal in the sense that there is a set F of 2n - 4 conditional faulty edges in Q(n) such that Q(n) - F contains no hamiltonian cycle. (c) 2007 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectcyclesen_US
dc.subjectpancyclicen_US
dc.subjectconditional faulten_US
dc.subjecthypercubeen_US
dc.subjectfault-toleranten_US
dc.subjectinterconnection networksen_US
dc.titleEdge-bipancyclicity of conditional faulty hypercubesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ipl.2007.07.009en_US
dc.identifier.journalINFORMATION PROCESSING LETTERSen_US
dc.citation.volume105en_US
dc.citation.issue1en_US
dc.citation.spage20en_US
dc.citation.epage25en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000250693100005-
dc.citation.woscount19-
Appears in Collections:Articles


Files in This Item:

  1. 000250693100005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.