Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, B. M. T.en_US
dc.contributor.authorKononov, A. V.en_US
dc.date.accessioned2014-12-08T15:13:03Z-
dc.date.available2014-12-08T15:13:03Z-
dc.date.issued2007-12-01en_US
dc.identifier.issn0377-2217en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ejor.2006.10.021en_US
dc.identifier.urihttp://hdl.handle.net/11536/10072-
dc.description.abstractIn the order scheduling problem, every job (order) consists of several tasks (product items), each of which will be processed on a dedicated machine. The completion time of a job is defined as the time at which all its tasks are finished. Minimizing the number of late jobs was known to be strongly NP-hard. In this note, we show that no FPTAS exists for the two-machine, common due date case, unless P = NP. We design a heuristic algorithm and analyze its performance ratio for the unweighted case. An LP-based approximation algorithm is presented for the general multicover problem. The algorithm can be applied to the weighted version of the order scheduling problem with a common due date. (c) 2006 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectorder schedulingen_US
dc.subjectnumber of late jobsen_US
dc.subjectapproximabilityen_US
dc.subjectapproximation algorithmen_US
dc.subjectmulticover problemen_US
dc.titleCustomer order scheduling to minimize the number of late jobsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ejor.2006.10.021en_US
dc.identifier.journalEUROPEAN JOURNAL OF OPERATIONAL RESEARCHen_US
dc.citation.volume183en_US
dc.citation.issue2en_US
dc.citation.spage944en_US
dc.citation.epage948en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000247827500034-
dc.citation.woscount6-
Appears in Collections:Articles


Files in This Item:

  1. 000247827500034.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.