标题: 基于证据累加的丛集整合技术之强韧化与功能延伸
Robustification and Functionality Extension of Evidence-Accumulation-Based Cluster Ensembles
作者: 王才沛
Wang Tsaipei
国立交通大学资讯工程学系(所)
关键字: 丛集整合;证据累加;共识丛集;强韧丛集法;cluster ensemble;evidence accumulation;consensus clustering;robust clusteringmethods
公开日期: 2009
摘要: 丛集化是一个可以在没有分类资讯的资料当中,将相关的资料点区分成丛集的方
法。丛集化演算法的种类很多,但并没有一个方法可以对所有的资料与丛集性质都产
生好的结果。丛集整合(cluster ensemble) 技术是近年的一个新趋势,其做法是对同一
组资料产生多个不同的丛集化结果,再结合这些个别结果来产生一个具有共识的、更
稳定也更能代表实际资料分布的分群。丛集整合的优点最近已逐渐被证实,也有愈来
愈多的应用出现在不同的领域。
这个二年期计画的整体目标是以证据累加丛集法(evidence-accumulation clustering)
--也就是基于co-association 矩阵的丛集整合方法--为基础,研讨改善其强韧性与延伸
其应用范围的方法。一方面,我们将证据累加丛集法与强韧丛集法做结合来改进其应
用到杂讯环境与未知丛集数量的问题时的效能。另一分面,我们也将丛集整合应用到
有特定丛集形状的问题,以利用丛集整合的优点于使用丛集演算法侦测线段丛集、面
丛集、以及主曲线的演算法,以改善其结果。我们预期这些研究成果将对发展丛集整
合的应用有明显的贡献。
Clustering is a process that groups unlabeled data points into clusters. There are a large
variety of clustering methods, but none can generate good clustering results for all types of
data and cluster characteristics. Cluster ensemble is a new trend in recent years. Its approach
is to generate multiple clustering results out of the same data set, and then combine the
individual clustering results to form a consensus partition of the data that is more stable and
more representative of the actual data distribution. As the benefits of cluster ensemble are
gradually recognized in recent years, there are a growing number of applications in various
fields.
The overall purpose of this two-year project is to start with evidence-accumulation
clustering, that is, the clustering ensemble methods based on co-association matrices, and
investigate methods that can improve its robustness and extend its applications. First, we
combine evidence-accumulation clustering with robust clustering algorithms to improve its
performance in problems that involve noisy data and unknown numbers of clusters. Second,
we apply cluster ensemble to clustering problems that identify clusters of particular shapes,
so that the benefits of cluster ensemble can improve the results of detecting line-segment
clusters, shell clusters, and principal curves. We expect the outcome of this project to have
contribute substantially to developing applications of cluster ensembles.
官方说明文件#: NSC98-2221-E009-146
URI: http://hdl.handle.net/11536/101777
https://www.grb.gov.tw/search/planDetail?id=1906046&docId=315925
显示于类别:Research Plans


文件中的档案:

  1. 982221E009146.PDF

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.