標題: 隨機樹節點的外出數度
The Out-Degree of Nodes in Random Trees
作者: 符麥克
FUCHS MICHAEL
國立交通大學應用數學系(所)
關鍵字: 演算法分析;隨機樹;外出數度 (out-degree);相變現象 (phase changephenomena);Analysis of algorithms;random trees;out-degree;phase change phenomena
公開日期: 2008
摘要: :在這個計畫中,我們想要研究隨機recursive樹裡外出數度為k的節點數目。 從一些關於unrooted unlabelled隨機樹及給定大小為k且位於隨機樹邊緣的子樹數 的最近研究結果顯示,我們猜測上述數目的期限分佈會隨者k的成長,從常態分 佈變換成Poisson分佈。我們提出一個方法,該方法不僅很可能可以證實此猜測, 也很可能可以更仔細地解釋此相變現象。除了隨機recursive樹之外,我們也想要 研究是否其他的隨機樹產生類似的分佈相變現象。
In this project, we will investigate the number of nodes with out-degree k in random recursive trees of size n. Recent results on unrooted unlabelled trees and on the number of subtrees at the fringe of random trees suggest that the limit law of the above quantity should undergo a phase change from normal to Poisson as k varies.We propose a method which should enable us to prove this conjecture as well as give a more detailed description of the phase change. Moreover, we plan to demonstrate that this phenomena exhibits some generality, i.e., a similar phase change is expected to hold for many other classes of random trees.
官方說明文件#: NSC97-2628-M009-008
URI: http://hdl.handle.net/11536/101962
https://www.grb.gov.tw/search/planDetail?id=1681378&docId=289547
Appears in Collections:Research Plans


Files in This Item:

  1. 972628M009008.PDF

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.