完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Tsung I.en_US
dc.contributor.authorLee, Jack C.en_US
dc.contributor.authorYen, Shu Y.en_US
dc.date.accessioned2014-12-08T15:13:46Z-
dc.date.available2014-12-08T15:13:46Z-
dc.date.issued2007-07-01en_US
dc.identifier.issn1017-0405en_US
dc.identifier.urihttp://hdl.handle.net/11536/10645-
dc.description.abstractNormal mixture models provide the most popular framework for modelling heterogeneity in a population with continuous outcomes arising in a variety of subclasses. In the last two decades, the skew normal distribution has been shown beneficial in dealing with asymmetric data in various theoretic and applied problems. In this article, we address the problem of analyzing a mixture of skew normal distributions from the likelihood-based and Bayesian perspectives, respectively. Computational techniques using EM-type algorithms are employed for iteratively computing maximum likelihood estimates. Also, a fully Bayesian approach using the Markov chain Monte Carlo method is developed to carry out posterior analyses. Numerical results are illustrated through two examples.en_US
dc.language.isoen_USen_US
dc.subjectECM algorithmen_US
dc.subjectECME algorithmen_US
dc.subjectfisher informationen_US
dc.subjectMarkov chain Monte Carloen_US
dc.subjectmaximum likelihood estimationen_US
dc.subjectskew normal mixturesen_US
dc.titleFinite mixture modelling using the skew normal distributionen_US
dc.typeArticleen_US
dc.identifier.journalSTATISTICA SINICAen_US
dc.citation.volume17en_US
dc.citation.issue3en_US
dc.citation.spage909en_US
dc.citation.epage927en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000248921600006-
dc.citation.woscount46-
顯示於類別:期刊論文