完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, Chih-Weien_US
dc.contributor.authorLu, Chung-Chinen_US
dc.date.accessioned2014-12-08T15:13:59Z-
dc.date.available2014-12-08T15:13:59Z-
dc.date.issued2007-06-01en_US
dc.identifier.issn0090-6778en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TCOMM.2007.898827en_US
dc.identifier.urihttp://hdl.handle.net/11536/10764-
dc.description.abstractIn this paper, we adopt a restricted Gaussian elimination on the Hankel structured augmented syndrome matrix -to reinterpret an early-stopped version of the Berlekamp-Massey algorithm in which only (t + e) iterations are needed to be performed for the decoding of BCH codes up to t errors, where e is the number of errors actually occurred with e <= t, instead of the 2t iterations required in the conventional Berlekamp-Massey algorithm. The minimality of (t + e) iterations in this early-stopped Berlekamp-Massey (ESBM) algorithm is justified and related to the subject of simultaneous error correction and detection in this paper. We show that the multiplicative complexity of the ESBM algorithm is upper bounded by (te + e(2) - 1) for all e <= t and except for a trivial case, the ESBM algorithm is the most efficient algorithm for finding the error-locator polynomial.en_US
dc.language.isoen_USen_US
dc.subjectBCH codesen_US
dc.subjectBerlekamp-Massey algorithmen_US
dc.subjectdecodingen_US
dc.subjecterror-correcting codesen_US
dc.subjectGaussian eliminationen_US
dc.titleA view of Gaussian elimination applied to early-stopped Berlekamp-Massey algorithmen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TCOMM.2007.898827en_US
dc.identifier.journalIEEE TRANSACTIONS ON COMMUNICATIONSen_US
dc.citation.volume55en_US
dc.citation.issue6en_US
dc.citation.spage1131en_US
dc.citation.epage1143en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000247389700009-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000247389700009.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。