Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Lin-Anen_US
dc.contributor.authorHuang, Jing-Yeen_US
dc.contributor.authorChen, Hung-Chiaen_US
dc.date.accessioned2014-12-08T15:14:26Z-
dc.date.available2014-12-08T15:14:26Z-
dc.date.issued2007-04-01en_US
dc.identifier.issn0026-1394en_US
dc.identifier.urihttp://dx.doi.org/10.1088/0026-1394/44/2/N01en_US
dc.identifier.urihttp://hdl.handle.net/11536/10992-
dc.description.abstractParametric estimation of coverage interval is useful since the parametric intervals are generally narrower than the non-parametric ones; however, it has been considered only for the measurement variable with normal distribution. Here we propose a general technique for constructing parametric coverage intervals that may deal with all distributions, both symmetric and asymmetric, in measurement science.en_US
dc.language.isoen_USen_US
dc.titleParametric coverage intervalen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/0026-1394/44/2/N01en_US
dc.identifier.journalMETROLOGIAen_US
dc.citation.volume44en_US
dc.citation.issue2en_US
dc.citation.spageL7en_US
dc.citation.epageL9en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000246553200003-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000246553200003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.