完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChuang, Chung-Yaoen_US
dc.contributor.authorChen, Ying-Pingen_US
dc.date.accessioned2014-12-08T15:14:29Z-
dc.date.available2014-12-08T15:14:29Z-
dc.date.issued2007en_US
dc.identifier.isbn978-1-4244-1339-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/11022-
dc.identifier.urihttp://dx.doi.org/10.1109/CEC.2007.4424493en_US
dc.description.abstractThe purpose of linkage identification in genetic and evolutionary algorithms is to detect the strongly related variables of the fitness function. If such linkage information can be acquired, the crossover or recombination operator can accordingly mix the discovered sub-solutions effectively without disrupting them. In this paper, we propose a new linkage identification technique, called inductive linkage identification (ILI), employing perturbation with decision tree induction. With the proposed scheme, the linkage information can be obtained by first constructing an ID3 decision tree to learn the mapping from the population of solutions to their corresponding fitness differences caused by perturbations and then inspecting the constructed decision tree for variables exhibiting strong interdependencies with one another. The numerical results show that the proposed technique can accomplish the identical linkage identification task with a lower number of function evaluations compared to similar methods proposed in the literature. Moreover, the proposed technique is also shown being able to handle both uniformly scaled and exponentially scaled problems.en_US
dc.language.isoen_USen_US
dc.titleLinkage identification by perturbation and decision tree inductionen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/CEC.2007.4424493en_US
dc.identifier.journal2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGSen_US
dc.citation.spage357en_US
dc.citation.epage363en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000256053700047-
顯示於類別:會議論文


文件中的檔案:

  1. 000256053700047.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。