Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuo, Y. -K.en_US
dc.contributor.authorChen, J. -R.en_US
dc.contributor.authorChen, M. -L.en_US
dc.contributor.authorLiou, B. -T.en_US
dc.date.accessioned2014-12-08T15:14:30Z-
dc.date.available2014-12-08T15:14:30Z-
dc.date.issued2007-03-01en_US
dc.identifier.issn0946-2171en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00340-006-2567-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/11035-
dc.description.abstractThe physical and optical properties of compressively strained InGaAsP/InGaP quantum wells for 850-nm vertical-cavity surface-emitting lasers are numerically studied. The simulation results show that the maximum optical gain, transparency carrier densities, transparency radiative current densities, and differential gain of InGaAsP quantum wells can be efficiently improved by employing a compressive strain of approximately 1.24% in the InGaAsP quantum wells. The simulation results suggest that the 850-nm InGaAsP/InGaP vertical-cavity surface-emitting lasers have the best laser performance when the number of quantum wells is one, which is mainly attributed to the non-uniform hole distribution in multiple quantum wells due to high valence band offset.en_US
dc.language.isoen_USen_US
dc.titleNumerical study on strained InGaAsP/InGaP quantum wells for 850-nm vertical-cavity surface-emitting lasersen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00340-006-2567-5en_US
dc.identifier.journalAPPLIED PHYSICS B-LASERS AND OPTICSen_US
dc.citation.volume86en_US
dc.citation.issue4en_US
dc.citation.spage623en_US
dc.citation.epage631en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000244674300010-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000244674300010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.