完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Tsung I.en_US
dc.contributor.authorLee, Jack C.en_US
dc.date.accessioned2014-12-08T15:14:49Z-
dc.date.available2014-12-08T15:14:49Z-
dc.date.issued2007-02-01en_US
dc.identifier.issn0378-3758en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jspi.2005.12.010en_US
dc.identifier.urihttp://hdl.handle.net/11536/11186-
dc.description.abstractThis article presents a fully Bayesian approach to modeling incomplete longitudinal data using the t linear mixed model with AR(p) dependence. Markov chain Monte Carlo (MCMC) techniques are implemented for computing posterior distributions of parameters. To facilitate the computation, two types of auxiliary indicator matrices are incorporated into the model. Meanwhile, the constraints on the parameter space arising from the stationarity conditions for the autoregressive parameters are handled by a reparametrization scheme. Bayesian predictive inferences for the future vector are also investigated. An application is illustrated through a real example from a multiple sclerosis clinical trial. (c) 2006 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectautoregressive processen_US
dc.subjectBayesian predictionen_US
dc.subjectMarkov chain Monte Carloen_US
dc.subjectmissing valuesen_US
dc.subjectrandom effectsen_US
dc.subjectt linear mixed modelsen_US
dc.titleBayesian analysis of hierarchical linear mixed modeling using the multivariate t distributionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jspi.2005.12.010en_US
dc.identifier.journalJOURNAL OF STATISTICAL PLANNING AND INFERENCEen_US
dc.citation.volume137en_US
dc.citation.issue2en_US
dc.citation.spage484en_US
dc.citation.epage495en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000241544000009-
dc.citation.woscount17-
顯示於類別:期刊論文


文件中的檔案:

  1. 000241544000009.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。