完整後設資料紀錄
DC 欄位語言
dc.contributor.authorCheng, Chang-Yuanen_US
dc.contributor.authorLin, Kuang-Huien_US
dc.contributor.authorShih, Chih-Wenen_US
dc.date.accessioned2014-12-08T15:15:02Z-
dc.date.available2014-12-08T15:15:02Z-
dc.date.issued2007-01-01en_US
dc.identifier.issn0167-2789en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.physd.2006.10.003en_US
dc.identifier.urihttp://hdl.handle.net/11536/11308-
dc.description.abstractWe present the existence of 2(n) stable stationary solutions for a general n-dimensional delayed neural networks with several classes of activation functions. The theory is obtained through formulating parameter conditions motivated by a geometrical observation. Positively invariant regions for the flows generated by the system and basins of attraction for these stationary solutions are established. The theory is also extended to the existence of 2(n) limit cycles for the n-dimensional delayed neural networks with time-periodic inputs. It is further confirmed that quasiconvergence is generic for the networks through justifying the strongly order preserving property as the self-feedback time lags are small for the neurons with negative self-connection weights. Our theory on existence of multiple equilibria is then incorporated into this quasiconvergence for the network. Four numerical simulations are presented to illustrate our theory. (c) 2006 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectmultistabitityen_US
dc.subjectneural networksen_US
dc.subjectmonotone dynamicsen_US
dc.subjectconvergenceen_US
dc.titleMultistability and convergence in delayed neural networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.physd.2006.10.003en_US
dc.identifier.journalPHYSICA D-NONLINEAR PHENOMENAen_US
dc.citation.volume225en_US
dc.citation.issue1en_US
dc.citation.spage61en_US
dc.citation.epage74en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000243667700006-
dc.citation.woscount58-
顯示於類別:期刊論文


文件中的檔案:

  1. 000243667700006.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。