Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Ming-Jeren_US
dc.contributor.authorTu, Kong-Chiangen_US
dc.contributor.authorChuang, Li-Yangen_US
dc.contributor.authorWang, Huan-Hsiungen_US
dc.date.accessioned2015-07-21T08:28:42Z-
dc.date.available2015-07-21T08:28:42Z-
dc.date.issued2015-03-01en_US
dc.identifier.issn0741-3106en_US
dc.identifier.urihttp://dx.doi.org/10.1109/LED.2015.2388787en_US
dc.identifier.urihttp://hdl.handle.net/11536/124562-
dc.description.abstractWe propose a novel graphic method to enable the analysis of the field-effect transistor (FET) threshold voltage variation Delta V-th due to random telegraph signals in a percolative channel. First, through technology computer-aided design simulation with no percolation, both a minimum Delta V-th and a critical curve in a m(loc) - sigma(loc) plot are produced. The former constitutes a statistical distribution far away from the conventional log-normal one. In the latter, m(loc) and sigma(loc) are the mean and the standard deviation, respectively, of a well-known normal variable in Mueller-Schulz\'s percolation theory. The critical m(loc) - sigma(loc) curve divides the plot into the allowed region and the forbidden region and will go down with increasing gate size. Then, Delta V-th contours in the allowed region are graphically created. While applying to existing experimental Delta V-th statistical distributions of SiON- and high-k metal gate (HKMG)-scaled FETs, resulting paired m(loc) and sigma(loc) at high Delta V-th remain intact, regardless of gate size or gate stack type. This means that the underlying percolation patterns resemble each other, due to the same manufacturing process used. However, if these paired m(loc) and sigma(loc) fall in the forbidden region, it is the critical m(loc) - sigma(loc) curve dominating. Application to bias and temperature instability statistical data in literature is straightforwardly well done.en_US
dc.language.isoen_USen_US
dc.subjectBias and temperature instability (BTI)en_US
dc.subjectfield-effect transistors (FETs)en_US
dc.subjectfluctuationsen_US
dc.subjectpercolationen_US
dc.subjectrandom telegraph signals (RTSs)en_US
dc.subjecttechnology computer-aided design (TCAD)en_US
dc.subjecttrapen_US
dc.titleGraphically Transforming Mueller-Schulz Percolation Criteria to Random Telegraph Signal Magnitudes in Scaled FETsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LED.2015.2388787en_US
dc.identifier.journalIEEE ELECTRON DEVICE LETTERSen_US
dc.citation.volume36en_US
dc.citation.spage217en_US
dc.citation.epage219en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000350336100001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles