標題: On Spectral Analysis and a Novel Algorithm for Transmission Eigenvalue Problems
作者: Li, Tiexiang
Huang, Wei-Qiang
Lin, Wen-Wei
Liu, Jijun
應用數學系
Department of Applied Mathematics
關鍵字: Transmission eigenvalues;Quadratic eigenvalue problems;Symmetric positive definite;Spectral analysis;Secant-type iteration method
公開日期: 1-Jul-2015
摘要: The transmission eigenvalue problem, besides its critical role in inverse scattering problems, deserves special interest of its own due to the fact that the corresponding differential operator is neither elliptic nor self-adjoint. In this paper, we provide a spectral analysis and propose a novel iterative algorithm for the computation of a few positive real eigenvalues and the corresponding eigenfunctions of the transmission eigenvalue problem. Based on approximation using continuous finite elements, we first derive an associated symmetric quadratic eigenvalue problem (QEP) for the transmission eigenvalue problem to eliminate the nonphysical zero eigenvalues while preserve all nonzero ones. In addition, the derived QEP enables us to consider more refined discretization to overcome the limitation on the number of degrees of freedom. We then transform the QEP to a parameterized symmetric definite generalized eigenvalue problem (GEP) and develop a secant-type iteration for solving the resulting GEPs. Moreover, we carry out spectral analysis for various existence intervals of desired positive real eigenvalues, since a few lowest positive real transmission eigenvalues are of practical interest in the estimation and the reconstruction of the index of refraction. Numerical experiments show that the proposed method can find those desired smallest positive real transmission eigenvalues accurately, efficiently, and robustly.
URI: http://dx.doi.org/10.1007/s10915-014-9923-0
http://hdl.handle.net/11536/124759
ISSN: 0885-7474
DOI: 10.1007/s10915-014-9923-0
期刊: JOURNAL OF SCIENTIFIC COMPUTING
Volume: 64
起始頁: 83
結束頁: 108
Appears in Collections:Articles